Multi-Relational Graph Transformer for Automatic Short Answer Grading

被引:0
|
作者
Agarwal, Rajat [1 ]
Khurana, Varun [1 ]
Grover, Karish [1 ]
Mohania, Mukesh [1 ]
Goyal, Vikram [1 ]
机构
[1] Indraprastha Inst Informat Technol, Delhi, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent transition to the online educational domain has increased the need for Automatic Short Answer Grading (ASAG). ASAG automatically evaluates a student's response against a (given) correct response and thus has been a prevalent semantic matching task. Most existing methods utilize sequential context to compare two sentences and ignore the structural context of the sentence; therefore, these methods may not result in the desired performance. In this paper, we overcome this problem by proposing a Multi-Relational Graph Transformer, MitiGaTe, to prepare token representations considering the structural context. Abstract Meaning Representation (AMR) graph is created by parsing the text response and then segregated into multiple subgraphs, each corresponding to a particular relationship in AMR. A Graph Transformer is used to prepare relation-specific token embeddings within each subgraph, then aggregated to obtain a subgraph representation. Finally, we compare the correct answer and the student response subgraph representations to yield a final score. Experimental results on Mohler's dataset show that our system outperforms the existing state-of-the-art methods. We have released our implementation(1), as we believe that our model can be useful for many future applications.
引用
收藏
页码:2001 / 2012
页数:12
相关论文
共 50 条
  • [1] Recursive Multi-Relational Graph Convolutional Network for Automatic Photo Selection
    Xu, Wujiang
    Xu, Yifei
    Sang, Genan
    Li, Li
    Wang, Aichen
    Wei, Pingping
    Zhu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3825 - 3840
  • [2] Explaining transformer-based models for automatic short answer grading
    Poulton, Andrew
    Eliens, Sebas
    5TH INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGY IN EDUCATION, ICDTE 2021, 2021, : 110 - 116
  • [3] Graph Heterogeneous Multi-Relational Recommendation
    Chen, Chong
    Ma, Weizhi
    Zhang, Min
    Wang, Zhaowei
    He, Xiuqiang
    Wang, Chenyang
    Liu, Yiqun
    Ma, Shaoping
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3958 - 3966
  • [4] Multi-relational Poincare Graph Embeddings
    Balazevic, Ivana
    Allen, Carl
    Hospedales, Timothy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Multi-relational dynamic graph representation learning
    Duan, Pingtao
    Ren, Xiangsheng
    Liu, Yuting
    NEUROCOMPUTING, 2023, 558
  • [6] Multi-relational graph attention networks for knowledge graph completion
    Li, Zhifei
    Zhao, Yue
    Zhang, Yan
    Zhang, Zhaoli
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [7] A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment
    Ye, Rui
    Li, Xin
    Fang, Yujie
    Zang, Hongyu
    Wang, Mingzhong
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4135 - 4141
  • [8] From Uni-relational to Multi-relational Graph Neural Networks
    Li, Juanhui
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1551 - 1552
  • [9] Automatic short answer grading by encoding student responses via a graph convolutional network
    Tan, Hongye
    Wang, Chong
    Duan, Qinglong
    Lu, Yu
    Zhang, Hu
    Li, Ru
    INTERACTIVE LEARNING ENVIRONMENTS, 2023, 31 (03) : 1636 - 1650
  • [10] MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion
    Dai, Guoquan
    Wang, Xizhao
    Zou, Xiaoying
    Liu, Chao
    Cen, Si
    NEURAL NETWORKS, 2022, 154 : 234 - 245