Thermal homeostasis using microstructured phase-change materials

被引:67
|
作者
Wu, Shao-Hua [1 ]
Chen, Mingkun [1 ]
Barako, Michael T. [2 ]
Jankovic, Vladan [2 ]
Hon, Philip W. C. [2 ]
Sweatlock, Luke A. [2 ]
Povinelli, Michelle L. [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[2] NG Next Northrop Grumman Corp, 1 Space Pk Dr, Redondo Beach, CA 90278 USA
来源
OPTICA | 2017年 / 4卷 / 11期
基金
美国国家科学基金会;
关键词
ATOMIC LAYER DEPOSITION; INFRARED METAMATERIALS; PERFECT ABSORBER; ARRAYS; RADIATOR; SWITCH;
D O I
10.1364/OPTICA.4.001390
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Humans and other warm-blooded mammals maintain their body temperature within a narrow range in a process called homeostasis. This ability to maintain an internal temperature, which is relatively insensitive to changes in the external environment or heat load is vital for all complex processes that sustain life. Without the ability to regulate temperature, materials and devices that experience large temperature gradients or temperature cycles are vulnerable to performance degradation or even catastrophic failure. Thermal control akin to the way living organisms achieve thermal homeostasis is particularly important in environments such as space, where changing solar illumination can cause large temperature variations. Various systems have been used to mitigate temperature fluctuations; however, they tend to be bulky and require power. Here, we model micropatterned phase-change materials to design an efficient, solid-state alternative, which requires no external input power. Our design is based on switchable thermal emission, which takes advantage of temperature-induced phase-change behavior in thin films of vanadium oxide on silicon microcones. (C) 2017 Optical Society of America
引用
收藏
页码:1390 / 1396
页数:7
相关论文
共 50 条
  • [1] Thermal homeostasis using microstructured phase-change materials (vol 4, pg 1390, 2017)
    Wu, Shao-Hua
    Chen, Mingkun
    Barako, Michael T.
    Jankovic, Vladan
    Hon, Philip W. C.
    Sweatlock, Luke A.
    Povinelli, Michelle L.
    [J]. OPTICA, 2018, 5 (09): : 1155 - 1155
  • [2] Thermal Homeostasis Device Using Phase-Change Materials
    Wu, Shao-Hua
    Chen, Mingkun
    Wang, Luqi
    Barako, Michael T.
    Jankovic, Vladan
    Hon, Philip
    Sweatlock, Luke A.
    Povinelli, Michelle L.
    [J]. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [3] SATELLITE THERMAL CONTROL USING PHASE-CHANGE MATERIALS
    FIXLER, SZ
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 1966, 3 (09) : 1362 - &
  • [4] PHASE-CHANGE MATERIALS AND THERMAL DESIGN
    LYONS, IL
    RUSSELL, LD
    [J]. ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1977, 19 (09): : 47 - 50
  • [5] Thermal characteristics of microencapsulated phase-change materials
    Choi, E
    Akino, N
    [J]. HEAT TRANSFER 1998, VOL 7: GENERAL PAPERS, 1998, : 121 - 126
  • [6] A Thermal Accumulator Based on Phase-Change Materials
    Bocharov, G. S.
    Vagin, A. O.
    Grigoriev, I. S.
    Dedov, A. V.
    Eletskii, A. V.
    Zakharenkov, A. V.
    Zverev, M. A.
    [J]. DOKLADY PHYSICS, 2022, 67 (06) : 169 - 172
  • [7] A Thermal Accumulator Based on Phase-Change Materials
    G. S. Bocharov
    A. O. Vagin
    I. S. Grigoriev
    A. V. Dedov
    A. V. Eletskii
    A. V. Zakharenkov
    M. A. Zverev
    [J]. Doklady Physics, 2022, 67 : 169 - 172
  • [8] Thermal storage using form-stable phase-change materials
    Syed, MT
    Kumar, S
    Moallemi, MK
    Naraghi, MN
    [J]. ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1997, 39 (05): : 45 - 50
  • [9] Effectiveness of a thermal energy storage system using phase-change materials
    ElDessouky, H
    AlJuwayhel, F
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (06) : 601 - 617
  • [10] SOLAR THERMAL STORAGE-SYSTEMS USING PHASE-CHANGE MATERIALS
    BUDDHI, D
    BANSAL, NK
    SAWHNEY, RL
    SODHA, MS
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1988, 12 (03) : 547 - 555