Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers

被引:1
|
作者
Ramos, J. A. P. [1 ]
Granato, E. [1 ]
Ying, S. C. [1 ]
Achim, C. V. [1 ]
Elder, K. R. [1 ]
Ala-Nissila, T. [1 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas, BR-45000000 Vitoria Da Conquista, BA, Brazil
关键词
SLIDING FRICTION; MONOLAYER;
D O I
10.1088/1742-6596/246/1/012024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    陈成
    陈铮
    张静
    杨涛
    杜秀娟
    Chinese Physics B, 2012, (11) : 502 - 508
  • [2] Nonlinear driven response of a phase-field crystal in a periodic pinning potential
    Achim, C. V.
    Ramos, J. A. P.
    Karttunen, M.
    Elder, K. R.
    Granato, E.
    Ala-Nissila, T.
    Ying, S. C.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [3] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    Chen Cheng
    Chen Zheng
    Zhang Jing
    Yang Tao
    Du Xiu-Juan
    CHINESE PHYSICS B, 2012, 21 (11)
  • [4] Nonlinear elasticity of the phase-field crystal model from the renormalization group
    Chan, Pak Yuen
    Goldenfeld, Nigel
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [5] ON A DOUBLY NONLINEAR PHASE-FIELD MODEL FOR FIRST-ORDER TRANSITIONS WITH MEMORY
    Berti, V.
    Fabrizio, M.
    Giorgi, C.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (3-4) : 325 - 350
  • [6] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [7] Phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 282 - 288
  • [8] Phase-field crystal model for heterostructures
    Hirvonen, Petri
    Heinonen, Vili
    Dong, Haikuan
    Fan, Zheyong
    Elder, Ken R.
    Ala-Nissila, Tapio
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [9] Displacive phase-field crystal model
    Alster, Eli
    Elder, K. R.
    Voorhees, Peter W.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (01)
  • [10] Dynamical transitions and sliding friction of the phase-field-crystal model with pinning
    Ramos, J. A. P.
    Granato, E.
    Ying, S. C.
    Achim, C. V.
    Elder, K. R.
    Ala-Nissila, T.
    PHYSICAL REVIEW E, 2010, 81 (01):