Estimation Parameters of Dependence Meta-Analytic Model: New Techniques for the Hierarchical Bayesian Model

被引:0
|
作者
Junaidi [1 ]
Nur, Darfiana [2 ]
Hudson, Irene [3 ]
Stojanovski, Elizabeth [4 ]
机构
[1] Tadulako Univ, Math & Nat Sci Fac, Stat Study Program, Palu 94118, Indonesia
[2] Curtin Univ, Fac Sci & Engn, EECMS, Bentley, WA 6102, Australia
[3] RMIT Univ, Sch Sci, STEM, Melbourne, Vic 3001, Australia
[4] Newcastle Univ, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
关键词
hierarchical Bayesian linear; dependence meta-analytic; sensitivity analysis; Gibbs sampling; metropolis within Gibbs; SIMULATION;
D O I
10.3390/computation10050071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dependence in meta-analytic models can happen due to the same collected data or from the same researchers. The hierarchical Bayesian linear model in a meta-analysis that allows dependence in effect sizes is investigated in this paper. The interested parameters on the hierarchical Bayesian linear dependence (HBLD) model which was developed using the Bayesian techniques will then be estimated. The joint posterior distribution of all parameters for the hierarchical Bayesian linear dependence (HBLD) model is obtained by applying the Gibbs sampling algorithm. Furthermore, in order to measure the robustness of the HBLD model, the sensitivity analysis is conducted using a different prior distribution on the model. This is carried out by applying the Metropolis within the Gibbs algorithm. The simulation study is performed for the estimation of all parameters in the model. The results show that the obtained estimated parameters are close to the true parameters, indicating the consistency of the parameters for the model. The model is also not sensitive because of the changing prior distribution which shows the robustness of the model. A case study, to assess the effects of native-language vocabulary aids on second language reading, is conducted successfully in testing the parameters of the models.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Bayesian analysis of meta-analytic models incorporating dependency: new approaches for the hierarchical Bayesian delta-splitting model
    Junaidi
    Nur, Darfiana
    Hudson, Irene
    Stojanovski, Elizabeth
    HELIYON, 2020, 6 (09)
  • [2] Meta-analytic evidence for a novel hierarchical model of conceptual processing
    Kuhnke, Philipp
    Beaupain, Marie C.
    Arola, Johannes
    Kiefer, Markus
    Hartwigsen, Gesa
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2023, 144
  • [3] Bayesian Meta-Analytic Measure
    Martins, Camila B.
    Pereira, Carlos A. de B.
    Polpo, Adriano
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37, 2018, 239 : 37 - 42
  • [4] Updating meta-analytic research findings: Bayesian approaches versus the medical model
    Schmidt, Frank L.
    Raju, Nambury S.
    JOURNAL OF APPLIED PSYCHOLOGY, 2007, 92 (02) : 297 - 308
  • [5] THE APPLICATION OF META-ANALYTIC TECHNIQUES IN ESTIMATING SELECTION CLASSIFICATION PARAMETERS
    ROSSMEISSL, PG
    STERN, BM
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1983, 21 (05) : 342 - 342
  • [6] A REVIEW OF META-ANALYTIC TECHNIQUES
    BRINBERG, D
    JACCARD, J
    ADVANCES IN CONSUMER RESEARCH, 1986, 13 : 606 - 611
  • [7] Meta-Analytic Bayesian Model For Differentiating Intestinal Tuberculosis from Crohn's Disease
    Limsrivilai, Julajak
    Shreiner, Andrew B.
    Pongpaibul, Ananya
    Laohapand, Charlie
    Boonanuwat, Rewat
    Pausawasdi, Nonthalee
    Pongprasobchai, Supot
    Manatsathit, Sathaporn
    Higgins, Peter D. R.
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2017, 112 (03): : 415 - 427
  • [8] Hierarchical Covariance Estimation Approach to Meta-Analytic Structural Equation Modeling
    Uanhoro, James
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (04) : 532 - 546
  • [9] A Bayesian meta-analytic approach to recovering compartmental pharmacokinetic model parameter information.
    Zhou, J.
    Qin, S.
    Hall, S.
    Li, L.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 : S41 - S41
  • [10] The Relational Turbulence Model: A Meta-Analytic Review
    Goodboy, Alan K.
    Bolkan, San
    Sharabi, Liesel L.
    Myers, Scott A.
    Baker, James P.
    HUMAN COMMUNICATION RESEARCH, 2020, 46 (2-3) : 222 - 249