Optimal unambiguous state discrimination of two density matrices:: A second class of exact solutions

被引:14
|
作者
Raynal, Philippe
Luetkenhaus, Norbert
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys 1, Quantum Informat Theory Grp, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, Max Planck Forsch Grp, D-91058 Erlangen, Germany
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevA.76.052322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the unambiguous state discrimination (USD) of two mixed quantum states. We study the rank and the spectrum of the elements of an optimal USD measurement. This naturally leads to a partial fourth reduction theorem. This theorem shows that either the failure probability equals its overall lower bound given in terms of the fidelity or a two-dimensional subspace can be split off from the original Hilbert space. We then use this partial reduction theorem to derive the optimal solution for any two equally probable geometrically uniform states rho(0) and rho(1)=U rho U-0(dagger), U-2=1, in a four-dimensional Hilbert space. This represents a second class of analytical solutions for USD problems that cannot be reduced to some pure state cases. We apply our result to answer two questions that are relevant in implementations of the Bennett and Brassard 1984 quantum key distribution protocol using weak coherent states.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimal unambiguous state discrimination of two density matrices:: Lower bound and class of exact solutions -: art. no. 022342
    Raynal, P
    Lütkenhaus, N
    [J]. PHYSICAL REVIEW A, 2005, 72 (02):
  • [2] Optimal unambiguous state discrimination of two density matrices:: Lower bound and class of exact solutions (vol 72, pg 022342, (2005) -: art. no. 049909
    Raynal, P
    Lütkenhaus, N
    [J]. PHYSICAL REVIEW A, 2005, 72 (04):
  • [3] Reduction theorems for optimal unambiguous state discrimination of density matrices -: art. no. 022308
    Raynal, P
    Lütkenhaus, N
    van Enk, SJ
    [J]. PHYSICAL REVIEW A, 2003, 68 (02):
  • [4] Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination
    Bergou, JA
    Feldman, E
    Hillery, M
    [J]. PHYSICAL REVIEW A, 2006, 73 (03):
  • [5] Quantum state separation, unambiguous discrimination and exact cloning
    Chefles, A
    Barnett, SM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (50): : 10097 - 10103
  • [6] Experimental demonstration of optimal unambiguous state discrimination
    Clarke, RBM
    Chefles, A
    Barnett, SM
    Riis, E
    [J]. PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 4
  • [7] Minimax Strategy of Optimal Unambiguous State Discrimination
    Zhang Wen-Hai
    Yu Long-Bao
    Cao Zhuo-Liang
    Ye Liu
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 209 - 212
  • [8] Minimax Strategy of Optimal Unambiguous State Discrimination
    张文海
    余宝龙
    曹卓良
    叶柳
    [J]. Communications in Theoretical Physics, 2012, 58 (08) : 209 - 212
  • [9] Experimental demonstration of optimal unambiguous state discrimination
    Clarke, Roger B. M.
    Chefles, Anthony
    Barnett, Stephen M.
    Riis, Erling
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (04): : 403051 - 403054
  • [10] Optimal Unambiguous Discrimination of Two Incompatible Quantum Measurements
    Mikova, M.
    Sedlak, M.
    Straka, I.
    Micuda, M.
    Ziman, M.
    Jezek, M.
    Fiurasek, J.
    Dusek, M.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,