Weak Solution for A-Dirac Equations in Clifford Analysis

被引:3
|
作者
Lian, Pan [1 ]
Lu, Yueming [1 ]
Bao, Gejun [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
关键词
Clifford Analysis; A-Dirac equations; Poincare inequality;
D O I
10.1007/s00006-014-0469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the weak solutions to A-Dirac equations DA(x, Du) = 0 with the Dirichlet boundary data. We get the existence and uniqueness of weak solution in the space W (D,p) (Omega, Cl-n). Also, we obtain the density theorem in W-D,W-p (Omega, Cl-n ) and Poincare type inequality in W-0(D,p) (Omega, Cl-n).
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [1] Weak Solution for A-Dirac Equations in Clifford Analysis
    Pan Lian
    Yueming Lu
    Gejun Bao
    Advances in Applied Clifford Algebras, 2015, 25 : 159 - 168
  • [2] Convergence of very weak solutions to A-Dirac equations in Clifford analysis
    Lu, Yueming
    Bi, Hui
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] Convergence of very weak solutions to A-Dirac equations in Clifford analysis
    Yueming Lu
    Hui Bi
    Advances in Difference Equations, 2015
  • [4] WEAK SOLUTIONS FOR A-DIRAC EQUATIONS WITH VARIABLE GROWTH IN CLIFFORD ANALYSIS
    Zhang, Binlin
    Fu, Yongqiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [5] Nonlinear A-Dirac Equations
    Nolder, Craig A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (02) : 429 - 440
  • [6] Nonlinear A-Dirac Equations
    Craig A. Nolder
    Advances in Applied Clifford Algebras, 2011, 21 : 429 - 440
  • [7] The Existence of Weak Solutions to Non-homogeneous A-Dirac Equations with Dirichlet Boundary Data
    Yueming Lu
    Gejun Bao
    Advances in Applied Clifford Algebras, 2014, 24 : 151 - 162
  • [8] The Existence of Weak Solutions to Non-homogeneous A-Dirac Equations with Dirichlet Boundary Data
    Lu, Yueming
    Bao, Gejun
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (01) : 151 - 162
  • [9] Existence of Stationary States for A-Dirac Equations with Variable Growth
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    Zhang, Binlin
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (02) : 385 - 402
  • [10] Existence of Stationary States for A-Dirac Equations with Variable Growth
    Giovanni Molica Bisci
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Advances in Applied Clifford Algebras, 2015, 25 : 385 - 402