MSE-optimal measurement dimension reduction in Gaussian filtering

被引:0
|
作者
Greiff, Marcus [1 ,2 ,3 ]
Robertsson, Anders [1 ,2 ,3 ]
Berntorp, Karl [4 ]
机构
[1] Lund Univ, LCCC Linnaeus Ctr, Lund, Sweden
[2] Lund Univ, ELLIIT Excellence Ctr, Lund, Sweden
[3] Lund Univ, Dept Automat Control, Swedish Sci Fdn SSF Project Semant Mapping & Visu, SE-22100 Lund, Sweden
[4] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
关键词
D O I
10.1109/ccta41146.2020.9206162
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a framework for measurement dimension reduction in Gaussian filtering, defined in terms of a linear operator acting on the measurement vector. This operator is optimized to minimize the Cramer-Rao bound of the estimate's mean squared error (MSE), yielding a measurement subspace from which elements minimally worsen the filter MSE performance, as compared to filtering with the original measurements. This is demonstrated with Kalman filtering in a linear Gaussian setting and various non-linear Gaussian filters with an on-line adaption of the operator. The proposed method improves computational time in exchange for a quantifiable and sometimes negligibly worsened MSE of the estimate.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [1] An Asymptotically MSE-Optimal Estimator Based on Gaussian Mixture Models
    Koller, Michael
    Fesl, Benedikt
    Turan, Nurettin
    Utschick, Wolfgang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4109 - 4123
  • [2] ON MSE-OPTIMAL CROSSOVER DESIGNS
    Neumann, Christoph
    Kunert, Joachim
    ANNALS OF STATISTICS, 2018, 46 (06): : 2939 - 2959
  • [3] On MSE-Optimal Circular Crossover Designs
    Neumann, C.
    Kunert, J.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (04)
  • [4] On MSE-Optimal Circular Crossover Designs
    C. Neumann
    J. Kunert
    Journal of Statistical Theory and Practice, 2021, 15
  • [5] ON THE RELATION BETWEEN THE GAUSSIAN INFORMATION BOTTLENECK AND MSE-OPTIMAL RATE-DISTORTION QUANTIZATION
    Meidlinger, Michael
    Winkelbauer, Andreas
    Matz, Gerald
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 89 - 92
  • [6] Determining the MSE-optimal cross section to forecast
    Arbues, Ignacio
    JOURNAL OF ECONOMETRICS, 2013, 175 (02) : 61 - 70
  • [7] MSE-optimal training for linear time-varying channels
    Kannu, AR
    Schniter, P
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 789 - 792
  • [8] On the support of MSE-optimal, fixed-rate, scalar quantizers
    Na, SS
    Neuhoff, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2972 - 2982
  • [9] MSE-Optimal Neural Network Initialization via Layer Fusion
    Ghods, Ramina
    Lan, Andrew S.
    Goldstein, Tom
    Studer, Christoph
    2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 63 - 68
  • [10] ScreeNOT: EXACT MSE-OPTIMAL SINGULAR VALUE THRESHOLDING IN CORRELATED NOISE
    Donoho, David
    Gavish, Matan
    Romanov, Elad
    ANNALS OF STATISTICS, 2023, 51 (01): : 122 - 148