ADA-PT: AN ADAPTIVE PARAMETER TUNING STRATEGY BASED ON THE WEIGHTED STEIN UNBIASED RISK ESTIMATOR

被引:0
|
作者
Ammanouil, Rita [1 ]
Ferrari, Andre [1 ]
Richard, Cedric [1 ]
机构
[1] Univ Cote Azur, CNRS, Observ Cote Azur, Lab JL Lagrange, Nice, France
关键词
Regularization parameter tuning; Stein unbiased risk estimate (SURE); Adaptive tuning; REGULARIZATION PARAMETER; POSED PROBLEMS; ALGORITHM; SURE; OPTIMIZATION; SELECTION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The performance of iterative algorithms aimed at solving a regularized least squares problem typically depends on the value of some regularization parameter. Tuning the regularization parameter value is a fundamental step necessary to control the strength of the regularization and hence ensure a good performance. We address the problem of finding the optimal regularization parameter in such iterative algorithms. We propose to adaptively adjust the regularization parameter throughout the iterations of the algorithm by minimizing an estimate of the current risk, typically the Weighted Stein unbiased risk estimate (WSURE). We then prove that, for the case of the Tikhonov regularization, the proposed ADAptive Parameter Tuning (ADA-PT) strategy provides a stationary point consistent with the risk minimizer. We illustrate the efficiency of ADA-PT on two image deconvolution problems: one with the Tikhonov regularization and one with the weighted l-1 analysis wavelet regularization.
引用
收藏
页码:4449 / 4453
页数:5
相关论文
共 11 条
  • [1] Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection
    Deledalle, Charles-Alban
    Vaiter, Samuel
    Fadili, Jalal
    Peyre, Gabriel
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (04): : 2448 - 2487
  • [2] Parameter Selection for Smoothing Splines using Stein's Unbiased Risk Estimator
    Seifzadeh, Sepideh
    Rostami, Mohammad
    Ghodsi, Ali
    Karray, Fakhreddine
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2733 - 2740
  • [3] On Convergence in Distribution of Stein's Unbiased Risk Hyper-parameter Estimator for Regularized System Identification
    Ju, Yue
    Chen, Tianshi
    Mu, Biqiang
    Ljung, Lennart
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1491 - 1496
  • [4] Sparse Bayesian Learning with Stein's Unbiased Risk Estimator based Hyperparameter Optimization
    Slock, Dirk
    [J]. 2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 857 - 861
  • [5] ON DIVERGENCE APPROXIMATIONS FOR UNSUPERVISED TRAINING OF DEEP DENOISERS BASED ON STEIN'S UNBIASED RISK ESTIMATOR
    Soltanayev, Shakarim
    Giryes, Raja
    Chun, Se Young
    Eldar, Yonina C.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3592 - 3596
  • [6] Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator
    Li, Caoyuan
    Xie, Hong-Bo
    Fan, Xuhui
    Da Xu, Richard Yi
    Van Huffel, Sabine
    Sisson, Scott A.
    Mengersen, Kerrie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 4899 - 4911
  • [7] Wavelet threshold based on Stein's unbiased risk estimators of restricted location parameter in multivariate normal
    Karamikabir, H.
    Afshari, M.
    Lak, F.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (10) : 1712 - 1729
  • [8] Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein's Unbiased Risk Estimator
    Lee, Seokjin
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [9] Efficiency of the generalized-difference-based weighted mixed almost unbiased two-parameter estimator in partially linear model
    Akdeniz, Fikri
    Roozbeh, Mahdi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (24) : 12259 - 12280