Relational peculiarity-oriented mining

被引:11
|
作者
Ohshima, Muneaki
Zhong, Ning
Yao, Yiyu
Liu, Chunnian
机构
[1] Maebashi Inst Technol, Dept Informat Engn, Maebashi, Gunma 3710816, Japan
[2] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
[3] Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
基金
中国国家自然科学基金;
关键词
peculiarity-oriented mining; relational data mining; identification of peculiar records; relational peculiarity rules; multi-database mining;
D O I
10.1007/s10618-006-0046-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Peculiarity rules are a new type of useful knowledge that can be discovered by searching the relevance among peculiar data. A main task in mining such knowledge is peculiarity identification. Previous methods for finding peculiar data focus on attribute values. By extending to record-level peculiarity, this paper investigates relational peculiarity-oriented mining. Peculiarity rules are mined, and more importantly explained, in a relational mining framework. Several experiments are carried out and the results show that relational peculiarity-oriented mining is effective.
引用
收藏
页码:249 / 273
页数:25
相关论文
共 50 条
  • [1] Relational peculiarity-oriented mining
    Muneaki Ohshima
    Ning Zhong
    YiYu Yao
    Chunnian Liu
    [J]. Data Mining and Knowledge Discovery, 2007, 15 : 249 - 273
  • [2] Relational peculiarity oriented data mining
    Zhong, N
    Liu, CN
    Yao, YY
    Ohshima, M
    Huang, MX
    Huang, JJ
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 575 - 578
  • [3] Peculiarity oriented multidatabase mining
    Zhong, N
    Yao, YY
    Ohshima, M
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2003, 15 (04) : 952 - 960
  • [4] Peculiarity Oriented EEG Data Stream Mining
    Motomura, Shinichi
    Ohshima, Muneaki
    Zhong, Ning
    [J]. BRAIN AND HEALTH INFORMATICS, 2013, 8211 : 147 - 157
  • [5] Peculiarity oriented multi-database mining
    Zhong, N
    Yao, YY
    Ohsuga, S
    [J]. PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 1704 : 136 - 146
  • [6] Peculiarity oriented mining in multiple human brain data
    Zhong, N
    Nakamaru, A
    Ohshima, M
    Wu, JL
    Mizuhara, H
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 742 - 750
  • [7] LOCAL PECULIARITY ORIENTED DATA MINING AND ITS APPLICATION IN OUTLIER DETECTION
    Yang, Jian
    Zhong, Ning
    Yao, Yiyu
    Wang, Jue
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2012, 11 (06) : 1155 - 1181
  • [8] Set-oriented data mining in relational databases
    Houtsma, M
    Swami, A
    [J]. DATA & KNOWLEDGE ENGINEERING, 1995, 17 (03) : 245 - 262
  • [9] Peculiarity oriented mining for multi-aspect ERP brain wave data analysis
    Motomura S.
    Zhong N.
    [J]. Transactions of the Japanese Society for Artificial Intelligence, 2010, 25 (04) : 530 - 539
  • [10] Interestingness, peculiarity, and multi-database mining
    Zhong, N
    Yao, YY
    Ohshima, M
    Ohsuga, S
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 566 - 573