Pt doping and strong metal-support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution

被引:31
|
作者
Liu, Jiao [1 ]
Wang, Zuochao [1 ]
Wu, Xueke [1 ]
Zhang, Dan [2 ]
Zhang, Yan [1 ]
Xiong, Juan [1 ]
Wu, Zexing [1 ]
Lai, Jianping [1 ]
Wang, Lei [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Key Lab Ecochem Engn Key Lab Opt Elect Sensing &, Taishan Scholar Advantage & Characterist Discipli, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Shandong Engn Res Ctr Marine Environm Corros & Sa, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
EFFICIENT; NANOSHEETS; CO;
D O I
10.1039/d2ta03934f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although extensive research has been carried out on non-noble metal-based materials in the alkaline electrocatalytic hydrogen evolution reaction (HER), designing electrocatalysts that have excellent stability and intrinsic activity exceeding that of Pt/C is still an urgent challenge. Herein, we developed a novel strategy to resolve these two problems, which combines Pt doping and a strong metal-support interaction (SMSI). By a simple, quick (60 s) and solvent-free microwave reduction method, Pt-Ni4Mo/CNT with small size (3-4 nm) was prepared and exhibits an extremely low overpotential of 18.6 mV at 10 mA cm(-2) in 1 M KOH. In addition, the catalyst has a large turnover frequency value at an overpotential of 100 mV, which is higher than that of Pt/C (4.31 s(-1)). Benefiting from the SMSI, the catalytic activity of the catalyst can be maintained for 200 h at 100 mA cm(-2), indicating that the catalyst has excellent stability. Finally, in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and density functional theory (DFT) calculations demonstrated that the Ni4Mo site mainly plays the role of dissociating water in the process of the HER to produce H* and OH*, then the strongly adsorbed H* intermediate is transferred to the Pt site, not only exposing the active center on Ni4Mo but accelerating the H-2 desorption process. This original strategy will provide valuable inspiration for the design and synthesis of other catalysts in the future.
引用
收藏
页码:15395 / 15401
页数:7
相关论文
共 50 条
  • [1] MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media
    Zhang, Jinping
    Zhang, Wenxin
    Zhang, Jinmei
    Li, Yingxue
    Wang, Yaling
    Yang, Liying
    Yin, Shougen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [2] Strong electronic metal-support interaction between Pt and stainless mesh for enhancing the hydrogen evolution reaction
    Li, Jin
    Luo, Jie
    Chen, Haipeng
    Qin, Bin
    Yuan, Changzhou
    Wu, Naiteng
    Liu, Guilong
    Liu, Xianming
    CHEMICAL COMMUNICATIONS, 2022, 58 (71) : 9918 - 9921
  • [3] Boron doping activate strong metal-support interaction for electrocatalytic hydrogen evolution reaction in full pH range
    Yu, Qingping
    Fu, Yixin
    Zhao, Jiarui
    Li, Bin
    Wang, Xinping
    Liu, Xiaobin
    Wang, Lei
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
  • [4] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Li, Shenzhou
    Wang, Tanyuan
    Li, Qing
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (12) : 3398 - 3414
  • [5] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Shenzhou Li
    Tanyuan Wang
    Qing Li
    Science China(Chemistry), 2023, 66 (12) : 3398 - 3414
  • [6] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Shenzhou Li
    Tanyuan Wang
    Qing Li
    Science China(Chemistry), 2023, (12) : 3398 - 3414
  • [7] Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion
    Shenzhou Li
    Tanyuan Wang
    Qing Li
    Science China Chemistry, 2023, 66 : 3398 - 3414
  • [8] Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction
    Chen, Min
    Rao, Peng
    Miao, Zhengpei
    Luo, Junming
    Li, Jing
    Deng, Peilin
    Huang, Wei
    Tian, Xinlong
    MICROSTRUCTURES, 2023, 3 (03):
  • [9] Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation
    Tian, Xiaoyu
    Ren, Renjie
    Wei, Fengyuan
    Pei, Jiajing
    Zhuang, Zhongbin
    Zhuang, Lin
    Sheng, Wenchao
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Enhanced hydrogen evolution reaction in alkaline solution by constructing strong metal-support interaction on Pd-CeO2-x-NC hybrids
    Yu, Yalin
    Dong, Zhihao
    Tan, Ling
    He, Nannan
    Tang, Rong
    Fang, Jiang
    Chen, Huan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 611 : 554 - 563