Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow

被引:22
|
作者
Polini, Alessandro [1 ,2 ]
Mele, Elisa [3 ]
Sciancalepore, Anna Giovanna [1 ]
Girardo, Salvatore [1 ]
Biasco, Adriana [1 ]
Camposeo, Andrea [1 ]
Cingolani, Roberto [4 ]
Weitz, David A. [5 ,6 ]
Pisignano, Dario [1 ,2 ,3 ]
机构
[1] Univ Salento, NNL, CNR, Ist Nanosci, I-73100 Lecce, Italy
[2] Univ Salento, Scuola Super ISUFI, I-73100 Lecce, Italy
[3] IIT, Ctr Biomol Nanotechnol, I-73100 Arnesano, LE, Italy
[4] IIT, I-16163 Genoa, Italy
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
BIOMICROFLUIDICS | 2010年 / 4卷 / 03期
关键词
biological techniques; biomedical equipment; bioMEMS; drops; elastomers; evaporation; fluid oscillations; lab-on-a-chip; microchannel flow; two-phase flow; water; REAL-TIME PCR; TEMPERATURE CONTROL; DNA AMPLIFICATION; CHIP; CAPILLARY; MICROCHIP; SYSTEMS; POLY(DIMETHYLSILOXANE); EXTRACTION; GRADIENT;
D O I
10.1063/1.3481776
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Producing polymeric or hybrid microfluidic devices operating at high temperatures with reduced or no water evaporation is a challenge for many on-chip applications including polymerase chain reaction (PCR). We study sample evaporation in polymeric and hybrid devices, realized by glass microchannels for avoiding water diffusion toward the elastomer used for chip fabrication. The method dramatically reduces water evaporation in PCR devices that are found to exhibit optimal stability and effective operation under oscillating-flow. This approach maintains the flexibility, ease of fabrication, and low cost of disposable chips, and can be extended to other high-temperature microfluidic biochemical reactors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3481776]
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High throughput oscillating-flow structure for polymerase chain reaction
    Zhou, Ranran
    Sun, Yu
    Luan, Yunxia
    Jia, Wenshen
    Yu, Yang
    Yang, Jing
    Chen, Jin
    Wang, Fengchao
    AIP ADVANCES, 2024, 14 (06)
  • [2] Polymerase chain reaction in microfluidic devices
    Ahrberg, Christian D.
    Manz, Andreas
    Chung, Bong Geun
    LAB ON A CHIP, 2016, 16 (20) : 3866 - 3884
  • [3] Microfluidic polymerase chain reaction
    Maltezos, George
    Gomez, Alvaro
    Zhong, Jiang
    Gomez, Frank A.
    Scherer, Axel
    APPLIED PHYSICS LETTERS, 2008, 93 (24)
  • [4] Siloxane photopolymer to replace polydimethylsiloxane in microfluidic devices for polymerase chain reaction
    Vitale, Alessandra
    Quaglio, Marzia
    Turri, Stefano
    Cocuzza, Matteo
    Bongiovanni, Roberta
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2013, 24 (12) : 1068 - 1074
  • [5] Droplet-based micro oscillating-flow PCR chip
    Wang, W
    Li, ZX
    Luo, R
    Lü, SH
    Xu, AD
    Yang, YJ
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (08) : 1369 - 1377
  • [6] MULTIDISCIPLINARY DESIGN AND OPTIMIZATION FOR OSCILLATING FLOW POLYMERASE CHAIN REACTION MICROFLUIDICS DEVICE
    Suwa, Tohru
    Hadim, Hamid
    Shi, Yong
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 2, 2010, : 187 - 193
  • [7] A versatile oscillating-flow microfluidic PCR system utilizing a thermal gradient for nucleic acid analysis
    Kopparthy, Varun L.
    Crews, Niel D.
    BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (05) : 1525 - 1532
  • [8] Miniaturized continuous-flow polymerase chain reaction microfluidic chip system
    Zuo T.
    Qi H.
    Yao L.
    Chen T.
    Frontiers of Optoelectronics in China, 2008, 1 (1-2): : 39 - 43
  • [9] Advances in polymerase chain reaction on microfluidic chips
    Roper, MG
    Easley, CJ
    Landers, JP
    ANALYTICAL CHEMISTRY, 2005, 77 (12) : 3887 - 3893
  • [10] An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis
    Yang, Siyu
    Zhang, Ziyi
    Xian, Qingyue
    Song, Qi
    Liu, Yiteng
    Gao, Yibo
    Wen, Weijia
    MOLECULES, 2023, 28 (03):