Hierarchical mean-field theory in quantum statistical mechanics: A bosonic example

被引:9
|
作者
Ortiz, G [1 ]
Batista, CD [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW B | 2003年 / 67卷 / 13期
关键词
D O I
10.1103/PhysRevB.67.134301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theoretical framework and a calculational scheme to study the coexistence and competition of thermodynamic phases in quantum statistical mechanics. The crux of the method is the realization that the microscopic Hamiltonian, modeling the system, can always be written in a hierarchical operator language that unveils all symmetry generators of the problem and, thus, possible thermodynamic phases. In general, one cannot compute the thermodynamic or zero-temperature properties exactly and an approximate scheme named "hierarchical mean-field approach" is introduced. This approach treats all possible competing orders on an equal footing. We illustrate the methodology by determining the phase diagram and quantum critical point of a bosonic lattice model which displays coexistence and competition between antiferromagnetism and superfluidity.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] QUANTUM STATISTICAL APPROACH TO EXTENDED MEAN-FIELD THEORY
    AYIK, S
    LECTURE NOTES IN PHYSICS, 1982, 171 : 181 - 189
  • [2] Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models
    Strand, Hugo U. R.
    Eckstein, Martin
    Werner, Philipp
    PHYSICAL REVIEW X, 2015, 5 (01):
  • [3] On the reliability of mean-field methods in polymer statistical mechanics
    Tsonchev, S
    Coalson, RD
    Chern, SS
    Duncan, A
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18): : 8381 - 8389
  • [4] BOSONIC MEAN-FIELD THEORY OF QUANTUM HEISENBERG SPIN SYSTEMS - BOSE CONDENSATION AND MAGNETIC ORDER
    SARKER, S
    JAYAPRAKASH, C
    KRISHNAMURTHY, HR
    MA, M
    PHYSICAL REVIEW B, 1989, 40 (07): : 5028 - 5035
  • [5] Statistical mean-field theory of finite quantum systems: canonical ensemble formulation
    Ponomarenko, S. A.
    Sherrill, M. E.
    Kilcrease, D. P.
    Csanak, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (30): : L499 - L505
  • [6] Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime
    Gottlieb, Alex D.
    Schumm, Thorsten
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [7] BOSONIC MEAN-FIELD THEORY OF THE SPIRAL PHASES OF HEISENBERG ANTIFERROMAGNETS ON A CHAIN
    RAO, S
    SEN, D
    PHYSICAL REVIEW B, 1993, 48 (17): : 12763 - 12767
  • [8] Strong-coupling solution of the bosonic dynamical mean-field theory
    Kauch, Anna
    Byczuk, Krzysztof
    Vollhardt, Dieter
    PHYSICAL REVIEW B, 2012, 85 (20)
  • [9] Multisite mean-field theory for cold bosonic atoms in optical lattices
    McIntosh, T.
    Pisarski, P.
    Gooding, R. J.
    Zaremba, E.
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [10] BOSONIC MEAN-FIELD THEORY FOR FRUSTRATED HEISENBERG ANTIFERROMAGNETS IN 2 DIMENSIONS
    CHITRA, R
    RAO, S
    SEN, D
    RAO, SS
    PHYSICAL REVIEW B, 1995, 52 (02): : 1061 - 1069