Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection

被引:27
|
作者
Gander, Matthew P. S. [1 ]
Stephens, David A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
stochastic volatility; Levy process; Markov chain Monte Carlo; model selection;
D O I
10.1016/j.jspi.2006.07.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein-Uhlenbeck stochastic differential equation driven by a Levy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:3068 / 3081
页数:14
相关论文
共 50 条
  • [1] Portfolio selection with stochastic volatility and continuous dividends
    Yang, Yunfeng
    Qiao, Rui
    Zheng, Yingchun
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 324 - 327
  • [2] Normal inverse Gaussian distributions and stochastic volatility modelling
    BarndorffNielsen, OE
    SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) : 1 - 13
  • [3] The general stochastic implied volatility model
    不详
    STOCHASTIC IMPLIED VOLATILITY: A FACTOR-BASED MODEL, 2004, 545 : 59 - 72
  • [4] Inference methods for discretely observed continuous-time stochastic volatility models: A commented overview
    Jimenez J.C.
    Biscay R.J.
    Ozaki T.
    Asia-Pacific Financial Markets, 2005, 12 (2) : 109 - 141
  • [5] Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility
    Parnell, Andrew C.
    Sweeney, James
    Doan, Thinh K.
    Salter-Townshend, Michael
    Allen, Judy R. M.
    Huntley, Brian
    Haslett, John
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (01) : 115 - 138
  • [6] Scalable inference for a full multivariate stochastic volatility model
    Dellaportas, Petros
    Titsias, Michalis K.
    Petrova, Katerina
    Plataniotis, Anastasios
    JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 501 - 520
  • [7] A continuous-time arbitrage-pricing model with stochastic volatility and jumps
    Ho, MS
    Perraudin, WRM
    Sorensen, BE
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1996, 14 (01) : 31 - 43
  • [8] Continuous-time VIX dynamics: On the role of stochastic volatility of volatility
    Kaeck, Andreas
    Alexander, Carol
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2013, 28 : 46 - 56
  • [9] A stochastic volatility model and optimal portfolio selection
    Zeng, Xudong
    Taksar, Michael
    QUANTITATIVE FINANCE, 2013, 13 (10) : 1547 - 1558
  • [10] A Stochastic Volatility Model With a General Leverage Specification
    Catania, Leopoldo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (02) : 678 - 689