THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1

被引:36
|
作者
Saglia, R. P. [1 ,2 ]
Tonry, J. L. [3 ]
Bender, R. [1 ,2 ]
Greisel, N. [2 ]
Seitz, S. [1 ,2 ]
Senger, R. [1 ]
Snigula, J. [1 ]
Phleps, S. [1 ]
Wilman, D. [1 ]
Bailer-Jones, C. A. L. [4 ]
Klement, R. J. [4 ,5 ]
Rix, H. -W. [4 ]
Smith, K. [4 ]
Green, P. J. [6 ]
Burgett, W. S. [3 ]
Chambers, K. C. [3 ]
Heasley, J. N. [3 ]
Kaiser, N. [3 ]
Magnier, E. A. [3 ]
Morgan, J. S. [3 ]
Price, P. A. [7 ]
Stubbs, C. W. [6 ]
Wainscoat, R. J. [3 ]
机构
[1] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany
[2] Univ Munich, Univ Observ Munich, D-81679 Munich, Germany
[3] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
[4] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[5] Univ Wurzburg, Dept Radiat Oncol, D-97080 Wurzburg, Germany
[6] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[7] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
来源
ASTROPHYSICAL JOURNAL | 2012年 / 746卷 / 02期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
galaxies: active; galaxies: distances and redshifts; stars: general; surveys; DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; SYNTHETIC GALAXY SPECTRA; FORS DEEP FIELD; DATA RELEASE; UNRESOLVED GALAXIES; REDSHIFT SURVEY; QUASARS; PARAMETRIZATION; SOFTWARE;
D O I
10.1088/0004-637X/746/2/128
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Pan-STARRS1 survey is obtaining multi-epoch imaging in five bands (g(P1)r(P1)i(P1)z(P1)y(P1)) over the entire sky north of declination -30 deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors and the measurement of photometric redshifts for extragalactic objects, and will constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium-Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited data set down to the SDSS spectroscopic limits, and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97%, and QSOs in 84%. False positives are less than 1% for galaxies, approximate to 19% for stars, and approximate to 28% for QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision (defined as 1.48 x Median vertical bar z(phot) - z(spec)vertical bar/(1 + z)) with just 0.4% catastrophic outliers and small (-0.5%) residual bias. For bluer galaxies up to the same redshift, the residual bias (on average -0.5%) trend, percentage of catastrophic failures (1.2%), and precision (4.2%) are higher, but still interestingly small for many science applications. Good photometric redshifts (to 5%) can be obtained for at most 60% of the QSOs of the sample. PCS will create a value-added catalog with classifications and photometric redshifts for eventually many millions of sources.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] THE Pan-STARRS1 PHOTOMETRIC SYSTEM
    Tonry, J. L.
    Stubbs, C. W.
    Lykke, K. R.
    Doherty, P.
    Shivvers, I. S.
    Burgett, W. S.
    Chambers, K. C.
    Hodapp, K. W.
    Kaiser, N.
    Kudritzki, R. -P.
    Magnier, E. A.
    Morgan, J. S.
    Price, P. A.
    Wainscoat, R. J.
    ASTROPHYSICAL JOURNAL, 2012, 750 (02):
  • [2] Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot
    Hosseinzadeh, Griffin
    Dauphin, Frederick
    Villar, V. Ashley
    Berger, Edo
    Jones, David O.
    Challis, Peter
    Chornock, Ryan
    Drout, Maria R.
    Foley, Ryan J.
    Kirshner, Robert P.
    Lunnan, Ragnhild
    Margutti, Raffaella
    Milisavljevic, Dan
    Pan, Yen-Chen
    Rest, Armin
    Scolnic, Daniel M.
    Magnier, Eugene
    Metcalfe, Nigel
    Wainscoat, Richard
    Waters, Christopher
    ASTROPHYSICAL JOURNAL, 2020, 905 (02):
  • [3] Photometric redshifts for the Pan-STARRS1 survey
    Tarrio, P.
    Zarattini, S.
    ASTRONOMY & ASTROPHYSICS, 2020, 642
  • [4] PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY
    Schlafly, E. F.
    Finkbeiner, D. P.
    Juric, M.
    Magnier, E. A.
    Burgett, W. S.
    Chambers, K. C.
    Grav, T.
    Hodapp, K. W.
    Kaiser, N.
    Kudritzki, R. -P.
    Martin, N. F.
    Morgan, J. S.
    Price, P. A.
    Rix, H. -W.
    Stubbs, C. W.
    Tonry, J. L.
    Wainscoat, R. J.
    ASTROPHYSICAL JOURNAL, 2012, 756 (02):
  • [5] The Photometric Classification Client for Pan-STARRS-1
    Snigula, Jan M.
    Bender, Ralf
    Saglia, Roberto
    Drory, Niv
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVIII, 2009, 411 : 268 - 271
  • [6] Galactic globular and open cluster fiducial sequences in the Pan-STARRS1 photometric system
    Bernard, Edouard J.
    Ferguson, Annette M. N.
    Schlafly, Edward F.
    Platais, Imants
    Bell, Eric F.
    Martin, Nicolas F.
    Rix, Hans-Walter
    Slater, Colin T.
    Burgett, William S.
    Chambers, Kenneth C.
    Draper, Peter W.
    Hodapp, Klaus W.
    Kaiser, Nicholas
    Kudritzki, Rolf-Peter
    Magnier, Eugene A.
    Metcalfe, Nigel
    Tonry, John L.
    Wainscoat, Richard J.
    Waters, Christopher
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 442 (04) : 2999 - 3009
  • [7] A Pan-STARRS1 Search for Planet Nine
    Brown, Michael E.
    Holman, Matthew J.
    Batygin, Konstantin
    ASTRONOMICAL JOURNAL, 2024, 167 (04):
  • [8] The Pan-STARRS1 Database and Data Products
    Flewelling, H. A.
    Magnier, E. A.
    Chambers, K. C.
    Heasley, J. N.
    Holmberg, C.
    Huber, M. E.
    Sweeney, W.
    Waters, C. Z.
    Calamida, A.
    Casertano, S.
    Chen, X.
    Farrow, D.
    Hasinger, G.
    Henderson, R.
    Long, K. S.
    Metcalfe, N.
    Narayan, G.
    Nieto-Santisteban, M. A.
    Norberg, P.
    Rest, A.
    Saglia, R. P.
    Szalay, A.
    Thakar, A. R.
    Tonry, J. L.
    Valenti, J.
    Werner, S.
    White, R.
    Denneau, L.
    Draper, P. W.
    Hodapp, K. W.
    Jedicke, R.
    Kaiser, N.
    Kudritzki, R. P.
    Price, P. A.
    Wainscoat, R. J.
    Chastel, S.
    McLean, B.
    Postman, M.
    Shiao, B.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 251 (01):
  • [9] SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae
    Villar, V. Ashley
    Hosseinzadeh, Griffin
    Berger, Edo
    Ntampaka, Michelle
    Jones, David O.
    Challis, Peter
    Chornock, Ryan
    Drout, Maria R.
    Foley, Ryan J.
    Kirshner, Robert P.
    Lunnan, Ragnhild
    Margutti, Raffaella
    Milisavljevic, Dan
    Sanders, Nathan
    Pan, Yen-Chen
    Rest, Armin
    Scolnic, Daniel M.
    Magnier, Eugene
    Metcalfe, Nigel
    Wainscoat, Richard
    Waters, Christopher
    ASTROPHYSICAL JOURNAL, 2020, 905 (02):
  • [10] Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey
    Villar, V. A.
    Berger, E.
    Miller, G.
    Chornock, R.
    Rest, A.
    Jones, D. O.
    Drout, M. R.
    Foley, R. J.
    Kirshner, R.
    Lunnan, R.
    Magnier, E.
    Milisavljevic, D.
    Sanders, N.
    Scolnic, D.
    ASTROPHYSICAL JOURNAL, 2019, 884 (01):