Optoelectronics of Multijunction Heterostructures of Transition Metal Dichalcogenides

被引:33
|
作者
Choi, Woosuk [1 ,2 ]
Akhtar, Imtisal [1 ,2 ]
Kang, Dongwoon [1 ,2 ]
Lee, Yeon-Jae [1 ,2 ]
Jung, Jongwan [1 ,2 ]
Kim, Yeon Ho [3 ]
Lee, Chul-Ho [3 ]
Hwang, David J. [4 ]
Seo, Yongho [1 ,2 ]
机构
[1] Sejong Univ, Dept Nanotechnol & Adv Mat Engn, HMC, Seoul 05006, South Korea
[2] Sejong Univ, GRI, Seoul 05006, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA
基金
新加坡国家研究基金会;
关键词
Two-dimensional materials; Multilayered heterostructures; Transition metal dichalcogenides; MoSe2; WSe2; p-n junction; FIELD-EFFECT TRANSISTORS; FEW-LAYER; BAND ALIGNMENT; WSE2; GROWTH; MOS2; MICROSCOPY; CONTACTS;
D O I
10.1021/acs.nanolett.9b05212
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Among p-n junction devices with multilayered heterostructures with WSe2 and MoSe2, a device with the MoSe2-WSe2-MoSe2 (NPN) structure showed a remarkably high photoresponse, which was 1000 times higher than the MoSe2-WSe2 (NP) structure. The ideality factor of the NPN structure was estimated to be similar to 1, lower than that of the NP structure. It is claimed that the NPN structure formed a thinner depletion region than that of the NP structure because of the difference of carrier concentrations of MoSe2 and WSe2. Hence, the built-in electric field was weaker, and the motion of the photocarriers was facilitated. These behaviors were confirmed experimentally from a photocurrent mapping analysis and Kelvin probe force microscopy. The work function depended on the wavelength of the illuminator, and quasi-Fermi level was estimated. The surface photovoltage on the MoSe2 region was higher than that on WSe2 because the lower bandgap of MoSe2 induces more electron-hole pair generation.
引用
收藏
页码:1934 / 1943
页数:10
相关论文
共 50 条
  • [1] Heterostructures of transition metal dichalcogenides
    Amin, B.
    Singh, N.
    Schwingenschloegl, U.
    [J]. PHYSICAL REVIEW B, 2015, 92 (07)
  • [2] Transition Metal Dichalcogenides Heterostructures Nanoribbons
    Ding, Yu
    Wang, Xiaozheng
    Xu, Qiongyi
    Xiong, Zeyou
    Wang, Huiliu
    Yu, Yantao
    Zhang, Tianzhu
    Zhang, Shunping
    Zeng, Mengqi
    Fu, Lei
    [J]. ACS MATERIALS LETTERS, 2023, 5 (07): : 1781 - 1786
  • [3] Synthesis of transition metal dichalcogenides and their heterostructures
    Cai, Yuhang
    Xu, Kai
    Zhu, Wenjuan
    [J]. MATERIALS RESEARCH EXPRESS, 2018, 5 (09)
  • [4] Interlayer interactions in transition metal dichalcogenides heterostructures
    Li W.
    Yang Z.
    Sun M.
    Dong J.
    [J]. Reviews in Physics, 2022, 9
  • [5] Harmonic generation in transition metal dichalcogenides and their heterostructures
    Ma, Rui
    Sutherland, Duncan S.
    Shi, Yumeng
    [J]. MATERIALS TODAY, 2021, 50 : 570 - 586
  • [6] Magnetotransport in heterostructures of transition metal dichalcogenides and graphene
    Voelkl, Tobias
    Rockinger, Tobias
    Drienovsky, Martin
    Watanabe, Kenji
    Taniguchi, Takashi
    Weiss, Dieter
    Eroms, Jonathan
    [J]. PHYSICAL REVIEW B, 2017, 96 (12)
  • [7] Lateral and Vertical Heterostructures of Transition Metal Dichalcogenides
    Aras, Mehmet
    Kilic, Cetin
    Ciraci, S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (03): : 1547 - 1555
  • [8] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Wang, Qing Hua
    Kalantar-Zadeh, Kourosh
    Kis, Andras
    Coleman, Jonathan N.
    Strano, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2012, 7 (11) : 699 - 712
  • [9] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Qing Hua Wang
    Kourosh Kalantar-Zadeh
    Andras Kis
    Jonathan N. Coleman
    Michael S. Strano
    [J]. Nature Nanotechnology, 2012, 7 : 699 - 712
  • [10] Atomically Transition Metal Dichalcogenides Heterostructures for Ultrafast Photonics
    Chen, Hao
    Li, Irene Ling
    Yan, Peiguang
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 287 - 290