Model predictive control with on-line model identification for anaerobic digestion processes

被引:21
|
作者
Kil, Hoil [1 ]
Li, Dewei [1 ]
Xi, Yugeng [1 ]
Li, Jiwei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Key Lab Syst Control & Informat Proc, Minist Educ, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 美国国家科学基金会;
关键词
Anaerobic digestion process; Model predictive control; Model reduction; State estimation; Optimal control; ADAPTIVE-CONTROL; WASTE-WATER; NO; CONTINUOUS BIOREACTOR; DEGRADATION; REACTOR;
D O I
10.1016/j.bej.2017.08.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper presents a nonlinear model predictive control approach for the anaerobic digestion process. A new model reduction strategy with estimation of the model parameters is proposed for the anaerobic digestion process. The reduced model is then used to predict future plant states in the nonlinear model predictive control. We develop a terminal feasible set to constrain terminal states in the prediction horizon, such that the controlled process beyond the horizon lies within a stable region and the predictive controller is recursively feasible. In addition, to make the predictive controller more practical, we design a predictive control algorithm that explicitly considers the influence of process disturbances and satisfies given constraints. Numerical simulations on the benchmark model ADM1 demonstrate the performance of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条
  • [1] Model predictive control with an on-line identification model of a supply chain unit
    Niu, Jian
    Xu, Zu-hua
    Zhao, Jun
    Shao, Zhi-jiang
    Qian, Ji-xin
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (05): : 394 - 400
  • [3] Model predictive control with an on-line identification model of a supply chain unit
    Jian Niu
    Zu-hua Xu
    Jun Zhao
    Zhi-jiang Shao
    Ji-xin Qian
    [J]. Journal of Zhejiang University SCIENCE C, 2010, 11 : 394 - 400
  • [4] MODEL IDENTIFICATION AND ON-LINE OPTIMAL CONTROL OF FOOD PROCESSES
    Balsa-Canto, E.
    Alonso, A. A.
    Antelo, L. T.
    Arias-Mendez, A.
    Lopez-Quiroga, E.
    Rivas, D.
    Vilas, C.
    [J]. COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, : 1395 - 1406
  • [5] Biogas production management systems with model predictive control of anaerobic digestion processes
    Kazuto Yoshida
    Naoto Shimizu
    [J]. Bioprocess and Biosystems Engineering, 2020, 43 : 2189 - 2200
  • [6] Biogas production management systems with model predictive control of anaerobic digestion processes
    Yoshida, Kazuto
    Shimizu, Naoto
    [J]. BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2020, 43 (12) : 2189 - 2200
  • [7] Error-Triggered On-line Model Identification in Economic Model Predictive Control
    Alanqar, Anas
    Durand, Helen
    Christofides, Panagiotis D.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1770 - 1777
  • [8] Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes
    Molina, F.
    Castellano, M.
    Garcia, C.
    Roca, E.
    Lema, J. M.
    [J]. WATER SCIENCE AND TECHNOLOGY, 2009, 60 (03) : 615 - 622
  • [9] Effect of on-line optimization techniques on model predictive control and identification (MPCI)
    Shouche, MS
    Genceli, H
    Nikolaou, M
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (09) : 1241 - 1252
  • [10] Model Predictive Control with On-Line Optimal Linearisation
    Lawrynczuk, Maciej
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 2177 - 2182