This paper presents a study of the design space of a Support Vector Machine (SVM) classifier with a linear kernel running on a manycore MPPA (Massively Parallel Processor Array) platform. This architecture gathers 256 cores distributed in 16 clusters working in parallel. This study aims at implementing a real-time hyperspectral SVM classifier, where real-time is defined as the time required to capture a hyperspectral image. To do so, two aspects of the SVM classifier have been analyzed: the classification algorithm and the system parallelization. On the one hand, concerning the classification algorithm, first, the classification model has been optimized to fit into the MPPA structure and, secondly, a probability estimation stage has been included to refine the classification results. On the other hand, the system parallelization has been divided into two levels: first, the parallelism of the classification has been exploited taking advantage of the pixel-wise classification methodology supported by the SVM algorithm and, secondly, a double-buffer communication procedure has been implemented to parallelize the image transmission and the cluster classification stages. Experimenting with medical images, an average speedup of 9 has been obtained using a single-cluster and double-buffer implementation with 16 cores working in parallel. As a result, a system whose processing time linearly grows with the number of pixels composing the scene has been implemented. Specifically, only 3 mu s are required to process each pixel within the captured scene independently from the spatial resolution of the image. (C) 2017 Elsevier B.V. All rights reserved.