Finite elements for elasticity with microstructure and gradient elasticity

被引:86
|
作者
Zervos, A. [1 ]
机构
[1] Univ Southampton, Sch Civil & Environm Engn, Southampton SO17 1BJ, Hants, England
关键词
gradient elasticity; elasticity with microstructure; couple stress; higher-order continuum; finite elements; penalty method;
D O I
10.1002/nme.2093
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general finite element discretization of Mindlin's elasticity with microstructure. A total of 12 isoparametric elements are developed and presented, six for plane strain conditions and six for the general case of three-dimensional deformation. All elements interpolate both the displacement and microdeformation fields. The minimum order of integration is determined for each element, and they are all shown to pass the single-element test and the patch test. Numerical results for the benchmark problem of one-dimensional deformation show good convergence to the closed-form solution. The behaviour of all elements is also examined at the limiting case of vanishing relative deformation, where elasticity with microstructure degenerates to gradient elasticity. An appropriate parameter selection that enforces this degeneration in an approximate manner is presented, and numerical results are shown to provide good approximation to the respective displacements and strains of a gradient elastic solid. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:564 / 595
页数:32
相关论文
共 50 条
  • [1] Rot-free mixed finite elements for gradient elasticity at finite strains
    Riesselmann, Johannes
    Ketteler, Jonas W.
    Schedensack, Mira
    Balzani, Daniel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (06) : 1602 - 1628
  • [2] Polygonal finite elements for finite elasticity
    Chi, Heng
    Talischi, Cameron
    Lopez-Pamies, Oscar
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) : 305 - 328
  • [3] Mixed finite elements for elasticity
    Arnold, DN
    Winther, R
    [J]. NUMERISCHE MATHEMATIK, 2002, 92 (03) : 401 - 419
  • [4] Mixed finite elements for elasticity
    Douglas N. Arnold
    Ragnar Winther
    [J]. Numerische Mathematik, 2002, 92 : 401 - 419
  • [5] Gradient elasticity finite element model for the microstructure analysis of asphaltic materials
    Dessouky, S
    Masad, E
    Zbib, H
    Little, D
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 228 - 233
  • [6] Hard interfaces with microstructure: the cases of strain gradient elasticity and micropolar elasticity
    Serpilli, Michele
    Rizzoni, Raffaella
    Lebon, Frederic
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2277):
  • [7] Anisotropic mixed finite elements for elasticity
    Pechstein, A.
    Schoeberl, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (02) : 196 - 217
  • [8] Rectangular mixed finite elements for elasticity
    Arnold, DN
    Awanou, G
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (09): : 1417 - 1429
  • [9] Discretization of Gradient Elasticity Problems Using C1 Finite Elements
    Papanicolopulos, Stefanos-Aldo
    Zervos, A.
    Vardoulakis, Ioannis
    [J]. MECHANICS OF GENERALIZED CONTINU A: ONE HUNDRED YEARS AFTER THE COSSERATS, 2010, 21 : 269 - +
  • [10] Unified finite element methodology for gradient elasticity
    Bagni, Cristian
    Askes, Harm
    [J]. COMPUTERS & STRUCTURES, 2015, 160 : 100 - 110