机构:
Univ Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, FranceUniv Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, France
Campana, Frederic
[1
]
Oguiso, Keiji
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Dept Math, Osaka 5600043, Japan
Korea Inst Adv Study, Seoul 130722, South KoreaUniv Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, France
Oguiso, Keiji
[2
,3
]
Peternell, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bayreuth, Math Inst, D-95440 Bayreuth, GermanyUniv Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, France
Peternell, Thomas
[4
]
机构:
[1] Univ Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, France
[2] Osaka Univ, Dept Math, Osaka 5600043, Japan
[3] Korea Inst Adv Study, Seoul 130722, South Korea
[4] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
LINE BUNDLES;
COMPACT;
COHOMOLOGY;
FAMILIES;
THEOREM;
SPACE;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the algebraic dimension a(X) of a compact hyperkahler manifold of dimension 2n. We show that a(X) is at most n unless X is projective. If a compact Kahler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0, n and 2n are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If n = 2, then - without any assumptions - the algebraic dimension only takes the values 0, 2 and 4. The paper also gives structure results for "generalised hyperkahler" manifolds and studies nef lines bundles.
机构:
Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
O'Grady, KG
European Congress of Mathematics,
2005,
: 365
-
380
机构:
Natl Res Univ Higher Sch Econ, Moscow, Russia
Russian Acad Sci SRISA, Fed State Inst, Sci Res Inst Syst Anal, Moscow, RussiaNatl Res Univ Higher Sch Econ, Moscow, Russia