NON-ALGEBRAIC HYPERKAHLER MANIFOLDS

被引:0
|
作者
Campana, Frederic [1 ]
Oguiso, Keiji [2 ,3 ]
Peternell, Thomas [4 ]
机构
[1] Univ Nancy, Dept Math, F-54506 Vandoeuvre Les Nancy, France
[2] Osaka Univ, Dept Math, Osaka 5600043, Japan
[3] Korea Inst Adv Study, Seoul 130722, South Korea
[4] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
LINE BUNDLES; COMPACT; COHOMOLOGY; FAMILIES; THEOREM; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the algebraic dimension a(X) of a compact hyperkahler manifold of dimension 2n. We show that a(X) is at most n unless X is projective. If a compact Kahler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0, n and 2n are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If n = 2, then - without any assumptions - the algebraic dimension only takes the values 0, 2 and 4. The paper also gives structure results for "generalised hyperkahler" manifolds and studies nef lines bundles.
引用
收藏
页码:397 / 424
页数:28
相关论文
共 50 条