An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach

被引:11
|
作者
Almuqren, Latifah [1 ]
Alrayes, Fatma S. [1 ]
Cristea, Alexandra, I [1 ,2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh 11564, Saudi Arabia
[2] Univ Durham, Comp Sci Dept, Durham DH1 3LE, England
关键词
customer churn; customer satisfaction; sentiment analysis; deep learning; KNOWLEDGE DISCOVERY; SENTIMENT ANALYSIS; MODEL; RETENTION;
D O I
10.3390/fi13070175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rising growth of the telecommunication industry, the customer churn problem has grown in significance as well. One of the most critical challenges in the data and voice telecommunication service industry is retaining customers, thus reducing customer churn by increasing customer satisfaction. Telecom companies have depended on historical customer data to measure customer churn. However, historical data does not reveal current customer satisfaction or future likeliness to switch between telecom companies. The related research reveals that many studies have focused on developing churner prediction models based on historical data. These models face delay issues and lack timelines for targeting customers in real-time. In addition, these models lack the ability to tap into Arabic language social media for real-time analysis. As a result, the design of a customer churn model based on real-time analytics is needed. Therefore, this study offers a new approach to using social media mining to predict customer churn in the telecommunication field. This represents the first work using Arabic Twitter mining to predict churn in Saudi Telecom companies. The newly proposed method proved its efficiency based on various standard metrics and based on a comparison with the ground-truth actual outcomes provided by a telecom company.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Customer churn prediction using data mining approach
    Qaisi, Laila M.
    Rodan, Ali
    Qaddoum, Kefaya
    Al-Sayyed, Rizik
    [J]. 2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 348 - 352
  • [2] Customer Churn Prediction in Superannuation: A Sequential Pattern Mining Approach
    Culbert, Ben
    Fu, Bin
    Brownlow, James
    Chu, Charles
    Meng, Qinxue
    Xu, Guandong
    [J]. DATABASES THEORY AND APPLICATIONS, ADC 2018, 2018, 10837 : 123 - 134
  • [3] Customer Churn Prediction Model using Data Mining techniques
    Mitkees, Ibrahim M. M.
    Badr, Sherif M.
    ElSeddawy, Ahmed Ibrahim Bahgat
    [J]. 2017 13TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2017, : 262 - 268
  • [4] Building the CRBT Customer Churn Prediction Model: A Data Mining Approach
    Su, Qian
    Shao, Peiji
    Zou, Tao
    [J]. SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III: UNLOCKING THE FULL POTENTIAL OF GLOBAL TECHNOLOGY, 2008, : 2611 - 2616
  • [5] Customer churn prediction in telecommunication industry using data mining methods
    Meghyasi, Homa
    Rad, Abas
    [J]. REVISTA INNOVACIENCIA, 2020, 8 (01):
  • [6] Churn Prediction in Telecom Using the Customer churn warning
    Zhang, Limei
    [J]. 2012 7TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2012, : 587 - 590
  • [7] A Hybrid Data Mining Method for Customer Churn Prediction
    Jamalian, Elham
    Foukerdi, Rahim
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2018, 8 (03) : 2991 - 2997
  • [8] Customer Churn Analysis and Prediction Using Data Mining Models in Banking Industry
    Karvana, Ketut Gde Manik
    Yazid, Setiadi
    Syalim, Amril
    Mursanto, Petrus
    [J]. 2019 4TH INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2019), 2019, : 33 - 37
  • [9] A Novel Approach to Customer Churn Prediction in Telecom
    Senthilselvi, A.
    Kanishk, V
    Vineesh, K.
    Raj, Praveen A.
    [J]. 2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [10] A Prudent Based Approach for Customer Churn Prediction
    Amin, Adnan
    Rahim, Faisal
    Ramzan, Muhammad
    Anwar, Sajid
    [J]. BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2015, 2015, 521 : 320 - 332