FAULT TOLERANT SPANNERS FOR GENERAL GRAPHS

被引:29
|
作者
Chechik, S. [1 ]
Langberg, M. [2 ]
Peleg, D. [1 ]
Roditty, L. [3 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[2] Open Univ Israel, Div Comp Sci, IL-43107 Raanana, Israel
[3] Bar Ilan Univ, Dept Comp Sci, IL-52900 Ramat Gan, Israel
关键词
fault tolerance; graphs; spanners; ORACLES;
D O I
10.1137/090758039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper concerns graph spanners that are resistant to vertex or edge failures. In the failure-free setting, it is known how to efficiently construct a (2k - 1)-spanner of size O(n(1+1/k)), and this size-stretch trade-off is conjectured to be tight. The notion of fault tolerant spanners was introduced a decade ago in the geometric setting [C. Levcopoulos, G. Narasimhan, and M. Smid, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 186-195]. A subgraph H is an f-vertex fault tolerant k-spanner of the graph G if for any set F subset of V of size at most f and any pair of vertices u, v is an element of V\F, the distances in H satisfy delta(H\F)(u, v) <= k center dot d(G\F)(u, v). A fault tolerant geometric spanner with optimal maximum degree and total weight was presented in [A. Czumaj and H. Zhao, Discrete Comput. Geom., 32 (2004), pp. 207-230]. This paper also raised as an open problem the question of whether it is possible to obtain a fault tolerant spanner for an arbitrary undirected weighted graph. The current paper answers this question in the affirmative, presenting an f-vertex fault tolerant (2k - 1)-spanner of size O(f(2)k(f) (vertical bar) (1) center dot n(1 vertical bar) (1/k) log(1-1/k) n). Interestingly, the stretch of the spanner remains unchanged, while the size of the spanner increases only by a factor that depends on the stretch k, on the number of potential faults f, and on logarithmic terms in n. In addition, we consider the simpler setting of f-edge fault tolerant spanners (defined analogously). We present an f-edge fault tolerant (2k-1)-spanner with edge set of size O(f center dot n(1+1/k)) (only f times larger than standard spanners). For both edge and vertex faults, our results are shown to hold when the given graph G is weighted.
引用
收藏
页码:3403 / 3423
页数:21
相关论文
共 50 条
  • [1] Fault-Tolerant Spanners for General Graphs
    Chechik, S.
    Langberg, M.
    Peleg, D.
    Roditty, L.
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 435 - 444
  • [2] Fault tolerant additive and (μ, α)-spanners
    Braunschvig, Gilad
    Chechik, Shiri
    Peleg, David
    Sealfon, Adam
    THEORETICAL COMPUTER SCIENCE, 2015, 580 : 94 - 100
  • [3] Fault Tolerant Additive Spanners
    Braunschvig, Gilad
    Chechik, Shiri
    Peleg, David
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 206 - 214
  • [4] Vertex fault tolerant additive spanners
    Parter, Merav
    DISTRIBUTED COMPUTING, 2017, 30 (05) : 357 - 372
  • [5] Fault-tolerant geometric spanners
    Czumaj, A
    Zhao, HR
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (02) : 207 - 230
  • [6] Vertex Fault Tolerant Additive Spanners
    Parter, Merav
    DISTRIBUTED COMPUTING (DISC 2014), 2014, 8784 : 167 - 181
  • [7] Vertex fault tolerant additive spanners
    Merav Parter
    Distributed Computing, 2017, 30 : 357 - 372
  • [8] Fault-Tolerant Geometric Spanners
    Artur Czumaj
    Hairong Zhao
    Discrete & Computational Geometry, 2004, 32 : 207 - 230
  • [9] Fault-Tolerant Spanners: Better and Simpler
    Dinitz, Michael
    Krauthgamer, Robert
    PODC 11: PROCEEDINGS OF THE 2011 ACM SYMPOSIUM PRINCIPLES OF DISTRIBUTED COMPUTING, 2011, : 169 - 178
  • [10] Region-Fault Tolerant Geometric Spanners
    Abam, M. A.
    de Berg, M.
    Farshi, M.
    Gudmundsson, J.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (04) : 556 - 582