Rayleigh range and the M2 factor for Bessel-Gauss beams

被引:18
|
作者
Herman, RM [1 ]
Wiggins, TA [1 ]
机构
[1] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
关键词
D O I
10.1364/AO.37.003398
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The M-2 factor of Bessel-Gauss beams derived by Borghi and Santarsiero [Opt. Lett. 22, 262-264 (1997)] is shown to predict the e(-2) axial position rather than the half-intensity position of the on-axis intensity as the Rayleigh range divided by M-2 for large values of k(t)w(0). For small values of k(t)w(0), the half-intensity axial position of the J(0) Bessel-Gauss beam is the Rayleigh range divided by M-2. Also, the ratio of the half-intensity lengths of J(0) Bessel-Gauss and comparable Gaussian beams having the same radial size of their central regions is shown to be M-2/1.3. For equal input powers and large k(t)w(0), the values of peak intensity times effective range for J(0) Bessel-Gauss beams is a constant and is a factor of 1.3 larger than the corresponding product for the comparable simple Gaussian beam. (C) 1998 Optical Society of America.
引用
收藏
页码:3398 / 3400
页数:3
相关论文
共 50 条
  • [1] M(2) factor of Bessel-Gauss beams
    Borghi, R
    Santarsiero, M
    [J]. OPTICS LETTERS, 1997, 22 (05) : 262 - 264
  • [2] Propagation and focusing of Bessel-Gauss, generalized Bessel-Gauss, and modified Bessel-Gauss beams
    Herman, RM
    Wiggins, TA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (01): : 170 - 176
  • [3] BESSEL-GAUSS BEAMS
    GORI, F
    GUATTARI, G
    PADOVANI, C
    [J]. OPTICS COMMUNICATIONS, 1987, 64 (06) : 491 - 495
  • [4] Generalized Bessel-Gauss beams
    Bagini, V
    Frezza, F
    Santarsiero, M
    Schettini, G
    Spagnolo, GS
    [J]. JOURNAL OF MODERN OPTICS, 1996, 43 (06) : 1155 - 1166
  • [5] Nonparaxial Bessel-Gauss beams
    Borghi, Riccardo
    Santarsiero, Massimo
    Porras, Miguel A.
    [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18 (07): : 1618 - 1626
  • [6] Nonparaxial Bessel-Gauss beams
    Borghi, R
    Santarsiero, M
    Porras, MA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07): : 1618 - 1626
  • [7] Asymmetric Bessel-Gauss beams
    Kotlyar, V. V.
    Kovalev, A. A.
    Skidanov, R. V.
    Soifer, V. A.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (09) : 1977 - 1983
  • [8] Noncoaxial Bessel-Gauss beams
    Huang, Chaohong
    Zheng, Yishu
    Li, Hanqing
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (04) : 508 - 512
  • [9] Propagation of obstructed Bessel and Bessel-Gauss beams
    Litvin, Igor A.
    McLaren, Melanie G.
    Forbes, Andrew
    [J]. LASER BEAM SHAPING IX, 2008, 7062
  • [10] On the nonparaxial corrections of Bessel-Gauss beams
    El Gawhary, Omar
    Severini, Sergio
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (03) : 458 - 460