Iterative Re-weighted L1-Norm Principal-Component Analysis

被引:0
|
作者
Liu, Ying [1 ]
Pados, Dimitris A. [2 ,3 ]
Batalama, Stella N. [2 ,3 ]
Medley, Michael J. [4 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Florida Atlantic Univ, Dept Comp & Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[3] Florida Atlantic Univ, I SENSE, Boca Raton, FL 33431 USA
[4] Air Force Res Lab, RITF, Rome, NY 13441 USA
基金
美国国家科学基金会;
关键词
Faulty data; feature extraction; L-1-norm; robust principal component analysis; eigenvector decomposition; outliers;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of principal-component analysis of a given set of data samples. When the data set contains faulty measurements/outliers, the performance of classic L-2 principal-component analysis (L-2-PCA) deteriorates drastically. Instead, L-1 principal-component analysis (L-1-PCA) offers outlier resistance due to the Li-norm maximization criterion it adopts to compute the principal subspace. In this work, we present an iterative re-weighted L-1-PCA method (IRW L-1-PCA) that generates a sequence of L-1-norm subspaces. In each iteration, the data set comformity of each sample is measured by the L-1 subspace calculated in the previous iteration and used to weigh the data sample before the L-1 subspace update. The approach automatically suppresses outliers in each iteration resulting in increasingly accurate subspace calculation. We provide convergence analysis and compare the proposed algorithm against benchmark algorithms in the literature. Experimental studies demonstrate the superiority of the proposed IRW L-1-PCA procedure.
引用
收藏
页码:425 / 429
页数:5
相关论文
共 50 条
  • [1] Detection of Change by L1-norm Principal-Component Analysis
    Gallone, Ginevra
    Varma, Kavita
    Pados, Dimitris A.
    Colonnese, Stefania
    [J]. BIG DATA II: LEARNING, ANALYTICS, AND APPLICATIONS, 2020, 11395
  • [2] L1-Norm Principal-Component Analysis of Complex Data
    Tsagkarakis, Nicholas
    Markopoulos, Panos P.
    Sklivanitis, George
    Pados, Dimitris A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (12) : 3256 - 3267
  • [3] OPTIMAL SPARSE L1-NORM PRINCIPAL-COMPONENT ANALYSIS
    Chamadia, Shubham
    Pados, Dimitris A.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2686 - 2690
  • [4] L1-norm Principal-Component Analysis via Bit Flipping
    Markopoulos, Panos P.
    Kundu, Sandipan
    Chamadia, Shubham
    Pados, Dimitris A.
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 326 - 332
  • [5] Novel Algorithm for Incremental L1-Norm Principal-Component Analysis
    Dhanaraj, Mayur
    Markopoulos, Panos P.
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2020 - 2024
  • [6] Conformity evaluation and L1-norm principal-component analysis of tensor data
    Tountas, Konstantinos
    Pados, Dimitris A.
    Medley, Michael J.
    [J]. BIG DATA: LEARNING, ANALYTICS, AND APPLICATIONS, 2019, 10989
  • [7] Conformity Evaluation of Data Samples by L1-Norm Principal-Component Analysis
    Liu, Ying
    Pados, Dimitris A.
    [J]. COMPRESSIVE SENSING VII: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2018, 10658
  • [8] Adaptive L1-Norm Principal-Component Analysis With Online Outlier Rejection
    Markopoulos, Panos P.
    Dhanaraj, Mayur
    Savakis, Andreas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1131 - 1143
  • [9] Efficient L1-Norm Principal-Component Analysis via Bit Flipping
    Markopoulos, Panos P.
    Kundu, Sandipan
    Chamadia, Shubham
    Pados, Dimitris A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) : 4252 - 4264
  • [10] Reduced-Rank L1-Norm Principal-Component Analysis With Performance Guarantees
    Kamrani, Hossein
    Asli, Alireza Zolghadr
    Markopoulos, Panos P.
    Langberg, Michael
    Pados, Dimitris A.
    Karystinos, George N.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 240 - 255