Statistical time-reversal symmetry and its physical applications

被引:6
|
作者
Dubkov, Alexander A. [1 ]
机构
[1] Lobachevsky State Univ, Radiophys Dept, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
Time-reversal symmetry; Cumulant functions; Markovian process; Langevin equation; Fluctuation-dissipation theorems; Oscillator with fluctuating frequency; FLUCTUATION-DISSIPATION THEOREM; COSTA; IVL ET-AL; BROWNIAN-MOTION; FAST SUPERDIFFUSION; GREEN NOISE; MOMENT INSTABILITIES; STOCHASTIC RESONANCE; HARMONIC OSCILLATOR; SYSTEMS; FAILS;
D O I
10.1016/j.chemphys.2010.05.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Some important consequences of the time-reversal symmetry of a stationary random process are highlighted. We discuss a connection between fluctuation-dissipation theorems and model macroscopic Langevin equations. Based on the property of statistical time reversibility we obtain the exact result for steady-state distribution of classical harmonic oscillator with fluctuating frequency. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:364 / 369
页数:6
相关论文
共 50 条
  • [1] Humean time-reversal symmetry
    Lopez, Cristian
    Esfeld, Michael
    [J]. SYNTHESE, 2023, 202 (02)
  • [2] A NOTE ON TIME-REVERSAL SYMMETRY
    GIRARD, R
    KROGER, H
    [J]. CANADIAN JOURNAL OF PHYSICS, 1985, 63 (08) : 1128 - 1131
  • [3] Noninvertible Time-Reversal Symmetry
    Choi, Yichul
    Lam, Ho Tat
    Shao, Shu-Heng
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [4] Time-reversal symmetry in optics
    Leuchs, G.
    Sondermann, M.
    [J]. PHYSICA SCRIPTA, 2012, 85 (05)
  • [5] TIME-REVERSAL SYMMETRY OF FLUCTUATIONS
    POMEAU, Y
    [J]. JOURNAL DE PHYSIQUE, 1982, 43 (06): : 859 - 867
  • [6] Time-reversal symmetry breaking?
    Borisenko, SV
    Kordyuk, AA
    Koitzsch, A
    Knupfer, M
    Fink, J
    Berger, H
    Lin, CT
    [J]. NATURE, 2004, 431 (7004) : 1 - 2
  • [7] Time-reversal symmetry breaking?
    Sergey V. Borisenko
    Alexander A. Kordyuk
    Andreas Koitzsch
    Martin Knupfer
    Jörg Fink
    Helmuth Berger
    Chengtian T. Lin
    [J]. Nature, 2004, 431 : 1 - 2
  • [8] Humean time-reversal symmetry
    Cristian López
    Michael Esfeld
    [J]. Synthese, 202
  • [9] TIME-REVERSAL SYMMETRY IN APPLICATIONS OF POINT GROUP-THEORY
    STEDMAN, GE
    BUTLER, PH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (10): : 3125 - 3140
  • [10] Time-reversal symmetry breaking? Reply
    Campuzano, JC
    Kaminski, A
    Rosenkranz, S
    Fretwell, HM
    [J]. NATURE, 2004, 431 (7004) : 2 - 3