Visual design support in dynamic probabilistic networks for driver modelling

被引:0
|
作者
Vogler, A [1 ]
Rammelt, P [1 ]
Herbers, J [1 ]
Neumerkel, D [1 ]
机构
[1] DaimlerChrysler AG, Res & Technol, Intelligent Syst, D-10559 Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding inference in probabilistic networks is an important point in the design phase. Their causal structure and locally defined parameters are intuitive to human experts. The global system induced by the local parameters can lead to results not intended by the human expert. Comprehending the behaviour of dynamic probabilistic networks (DPN) for tuning the model is a time consuming task. Therefore this paper introduces tools supporting the design phase. The application of these tools is shown by means of a DPN for human driver modelling.
引用
收藏
页码:591 / 595
页数:5
相关论文
共 50 条
  • [1] Visual design support for probabilistic network application
    Vogler, A
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS 99, PROCEEDINGS, 1999, : 309 - 314
  • [2] Modelling driver acceptance of driver support systems
    Rahman, Md Mahmudur
    Strawderman, Lesley
    Lesch, Mary F.
    Horrey, William J.
    Babski-Reeves, Kari
    Garrison, Teena
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2018, 121 : 134 - 147
  • [3] Layered dynamic probabilistic networks for spatio-temporal modelling
    Bui, Hung H.
    Venkatesh, Svetha
    West, Geoff
    [J]. Intelligent Data Analysis, 1999, 3 (05): : 339 - 361
  • [4] MODELLING PROBABILISTIC WIRELESS NETWORKS
    Cerone, Andrea
    Hennessy, Matthew
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (03)
  • [5] Planning in driver models using Probabilistic networks
    Rammelt, P
    [J]. IEEE ROMAN 2002, PROCEEDINGS, 2002, : 87 - 92
  • [6] Probabilistic dynamic optimization design for support structure of offshore wind turbines
    Lu, Qi-Jin
    Yang, He-Zhen
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2013, 32 (17): : 46 - 51
  • [7] Probabilistic assessment of visual fatigue caused by stereoscopy using dynamic Bayesian networks
    Yuan, Zhongyun
    Zhuo, Kai
    Zhang, Qiang
    Zhao, Chun
    Sang, Shengbo
    [J]. ACTA OPHTHALMOLOGICA, 2019, 97 (03) : E435 - E441
  • [8] Modelling dynamic value streams in support of process design and evaluation
    Agyapong-Kodua, K.
    Ajaefobi, J. O.
    Weston, R. H.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2009, 22 (05) : 411 - 427
  • [9] Modelling Probabilistic Inference Networks and Classification in Probabilistic Datalog
    Martinez-Alvarez, Miguel
    Roelleke, Thomas
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 278 - 291
  • [10] Modelling of nonlinear dynamic systems using support vector neural networks
    Chan, WC
    Chan, CW
    Cheung, KC
    Harris, CJ
    [J]. ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 2000, 2001, : 213 - 218