High throughput microscopy: from raw images to discoveries

被引:74
|
作者
Wollman, Roy [1 ]
Stuurman, Nico
机构
[1] Univ Calif Davis, Dept Mol & Cell Biol, Davis, CA 95616 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Cellular & Mol Pharmacol, San Francisco, CA USA
关键词
high-throughput microscopy (HTM); image analysis; RNAi; genome-wide screen;
D O I
10.1242/jcs.013623
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Technological advances in automated microscopy now allow rapid acquisition of many images without human intervention, images that can be used for large-scale screens. The main challenge in such screens is the conversion of the raw images into interpretable information and hence discoveries. This post-acquisition component of image-based screens requires computational steps to identify cells, choose the cells of interest, assess their phenotype, and identify statistically significant 'hits'. Designing such an analysis pipeline requires careful consideration of the necessary hardware and software components, image analysis, statistical analysis and data presentation tools. Given the increasing availability of such hardware and software, these types of experiments have come within the reach of individual labs, heralding many interesting new ways of acquiring biological knowledge.
引用
收藏
页码:3715 / 3722
页数:8
相关论文
共 50 条
  • [1] High throughput microscopy: From images to data
    Price, Jeffrey H.
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 247 - 250
  • [2] High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images
    Laramy, Christine R.
    Brown, Keith A.
    O'Brien, Matthew N.
    Mirkin, Chad. A.
    ACS NANO, 2015, 9 (12) : 12488 - 12495
  • [3] Pipeline for illumination correction of images for high-throughput microscopy
    Singh, S.
    Bray, M. -A.
    Jones, T. R.
    Carpenter, A. E.
    JOURNAL OF MICROSCOPY, 2014, 256 (03) : 231 - 236
  • [4] A high-throughput framework to detect synapses in electron microscopy images
    Navlakha, Saket
    Suhan, Joseph
    Barth, Alison L.
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2013, 29 (13) : 9 - 17
  • [5] Synthetic images of high-throughput microscopy for validation of image analysis methods
    Lehmussola, Antti
    Ruusuvuori, Pekka
    Selinummi, Jyrki
    Rajala, Tiina
    Yli-Harja, Olli
    PROCEEDINGS OF THE IEEE, 2008, 96 (08) : 1348 - 1360
  • [6] Screening of apoptotic genes by morphological analysis of high throughput fluorescence microscopy images
    Chae, Yongsu
    Kim, Soo Jung
    Kim, Desok
    PROCEEDINGS OF THE FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, 2007, : 16 - +
  • [7] An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy
    Buggenthin, Felix
    Marr, Carsten
    Schwarzfischer, Michael
    Hoppe, Philipp S.
    Hilsenbeck, Oliver
    Schroeder, Timm
    Theis, Fabian J.
    BMC BIOINFORMATICS, 2013, 14
  • [8] Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
    Parnamaa, Tanel
    Parts, Leopold
    G3-GENES GENOMES GENETICS, 2017, 7 (05): : 1385 - 1392
  • [9] An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy
    Felix Buggenthin
    Carsten Marr
    Michael Schwarzfischer
    Philipp S Hoppe
    Oliver Hilsenbeck
    Timm Schroeder
    Fabian J Theis
    BMC Bioinformatics, 14
  • [10] Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks
    Hofmarcher, Markus
    Rumetshofer, Elisabeth
    Clevert, Djork-Arne
    Hochreiter, Sepp
    Klambauer, Guenter
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 1163 - 1171