Variance estimation for population attributable risk in a complex cross-sectional animal health survey

被引:8
|
作者
Wagner, BA
Wells, SJ
Kott, PS
机构
[1] USDA ARS, Anim & Plant Hlth Inspect Serv, Vet Serv, Ctr Epidemiol, Ft Collins, CO 80521 USA
[2] USDA ARS, Anim & Plant Hlth Inspect Serv, Vet Serv, Ctr Anim Hlth, Ft Collins, CO 80521 USA
[3] Univ Minnesota, Coll Vet Med, Dept Clin & Populat Sci, St Paul, MN 55108 USA
[4] USDA, Natl Agr Stat Serv, Fairfax, VA USA
关键词
population attributable risk; variance; estimation; Johne's disease; National Animal Health Monitoring System;
D O I
10.1016/S0167-5877(00)00178-1
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Population attributable risk estimates offer a method of combining information on population exposure and disease risk factors into a single measure. Univariate and multivariable methods exist for calculating point estimates and variances under the assumption of equal sampling probabilities. National Animal Health Monitoring System national studies typically use a complex survey design (where selection probabilities vary by design strata), which makes use of these methods of calculating variance inappropriate. We suggest the use of a method called "delete-a-group" jackknife to estimate the variance of population attributable risk when a complex survey design has been implemented. We demonstrate the method using an example of Johne's disease. Advantages of the "delete-a-group" jackknife method include simplicity of implementation and flexibility to estimate variance for any point estimate of interest. Published by Elsevier Science B.V.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Model-based estimation of population attributable risk under cross-sectional sampling
    Basu, S
    Landis, JR
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) : 1338 - 1343
  • [2] Notes on interval estimation of the attributable risk in cross-sectional sampling
    Lui, KJ
    [J]. STATISTICS IN MEDICINE, 2001, 20 (12) : 1797 - 1809
  • [3] Estimation of the variance of cross-sectional indicators for the SILC survey in Switzerland
    Massiani, Anne
    [J]. SURVEY METHODOLOGY, 2013, 39 (01) : 121 - 148
  • [5] Multilevel attributable risk in cross-sectional studies
    Shapla, Tanweer J.
    Nguyen, Truc T.
    Chen, John T.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (01) : 39 - 54
  • [6] Health-state utilities in a prisoner population: a cross-sectional survey
    Chong, Christopher A. K. Y.
    Li, Sicong
    Nguyen, Geoffrey C.
    Sutton, Andrew
    Levy, Michael H.
    Butler, Tony
    Krahn, Murray D.
    Thein, Hla-Hla
    [J]. HEALTH AND QUALITY OF LIFE OUTCOMES, 2009, 7 : 78
  • [7] Health-related productivity of the Hungarian population A cross-sectional survey
    Pentek Marta
    Beretzky Zsuzsanna
    Brodszky Valentin
    Szabo, J. Attila
    Kovacs Levente
    Kincses Aron
    Baji Petra
    Zrubka Zsombor
    Rencz Fanni
    Gulacsi Laszlo
    [J]. ORVOSI HETILAP, 2020, 161 (36) : 1522 - 1533
  • [8] Health-state utilities in a prisoner population: a cross-sectional survey
    Christopher AKY Chong
    Sicong Li
    Geoffrey C Nguyen
    Andrew Sutton
    Michael H Levy
    Tony Butler
    Murray D Krahn
    Hla-Hla Thein
    [J]. Health and Quality of Life Outcomes, 7
  • [9] Population attributable fractions for risk factors for dementia in seven Latin American countries: an analysis using cross-sectional survey data
    Paradela, Regina Silva
    Calandri, Ismael
    Castro, Natalia Pozo
    Garat, Emanuel
    Delgado, Carolina
    Crivelli, Lucia
    Yaffe, Kristine
    Ferri, Cleusa P.
    Mukadam, Naaheed
    Livingston, Gill
    Suemoto, Claudia Kimie
    [J]. LANCET GLOBAL HEALTH, 2024, 12 (10): : e1600 - e1610
  • [10] Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies
    Pirikahu, Sarah
    Jones, Geoffrey
    Hazelton, Martin L.
    Heuer, Cord
    [J]. STATISTICS IN MEDICINE, 2016, 35 (18) : 3117 - 3130