VIF-Regression Screening Ultrahigh Dimensional Feature Space

被引:1
|
作者
Uraibi, Hassan S. [1 ]
机构
[1] Univ Al Qadisiyah, Al Diwaniyah, Iraq
关键词
VIF Regression; ISIS; screening; feature selection; high dimensional data; ADAPTIVE LASSO; SELECTION;
D O I
10.22237/jmasm/1608553020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Iterative Sure Independent Screening (ISIS) was proposed for the problem of variable selection with ultrahigh dimensional feature space. Unfortunately, the ISIS method transforms the dimensionality of features from ultrahigh to ultra-low and may result in unreliable inference when the number of important variables particularly is greater than the screening threshold. The proposed method has transformed the ultrahigh dimensionality of features to high dimension space in order to remedy of losing some information by ISIS method. The proposed method is compared with ISIS method by using real data and simulation. The results show this method is more efficient and more reliable than ISIS method.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [1] Sure independence screening for ultrahigh dimensional feature space
    Fan, Jianqing
    Lv, Jinchi
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 849 - 883
  • [2] Sure independence screening for ultrahigh dimensional feature space Discussion
    Bickel, Peter
    Buehlmann, Peter
    Yao, Qiwei
    Samworth, Richard
    Hall, Peter
    Titterington, D. M.
    Xue, Jing-Hao
    Anagnostopoulos, C.
    Tasoullis, D. K.
    Zhang, Wenyang
    Xia, Yingcun
    Johnstone, Iain M.
    Richardson, Sylvia
    Bottolo, Leonardo
    Kent, John T.
    Adragni, Kofi
    Cook, R. Dennis
    Gather, Ursula
    Guddat, Charlotte
    Greenshtein, Eitan
    James, Gareth M.
    Radchenko, Peter
    Leng, Chenlei
    Wang, Hansheng
    Levina, Elizaveta
    Zhu, Ji
    Li, Runze
    Liu, Yufeng
    Longford, N. T.
    Luo, Weiqi
    Baxter, Paul D.
    Taylor, Charles C.
    Marron, J. S.
    Morris, Jeffrey S.
    Robert, Christian P.
    Yu, Keming
    Zhang, Cun-Hui
    Zhang, Hao Helen
    Zhou, Harrison H.
    Lin, Xihong
    Zou, Hui
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 883 - 911
  • [3] Model-free feature screening for ultrahigh dimensional censored regression
    Zhou, Tingyou
    Zhu, Liping
    [J]. STATISTICS AND COMPUTING, 2017, 27 (04) : 947 - 961
  • [4] Model-free feature screening for ultrahigh dimensional censored regression
    Tingyou Zhou
    Liping Zhu
    [J]. Statistics and Computing, 2017, 27 : 947 - 961
  • [5] Unified mean-variance feature screening for ultrahigh-dimensional regression
    Liming Wang
    Xingxiang Li
    Xiaoqing Wang
    Peng Lai
    [J]. Computational Statistics, 2022, 37 : 1887 - 1918
  • [6] Unified mean-variance feature screening for ultrahigh-dimensional regression
    Wang, Liming
    Li, Xingxiang
    Wang, Xiaoqing
    Lai, Peng
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 1887 - 1918
  • [7] Stable feature screening for ultrahigh dimensional data
    Lai, Peng
    Song, Fengli
    Gao, Yufei
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 221 - 232
  • [8] Stable feature screening for ultrahigh dimensional data
    Peng Lai
    Fengli Song
    Yufei Gao
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 221 - 232
  • [9] Ultrahigh dimensional feature screening via projection
    Li, Xingxiang
    Cheng, Guosheng
    Wang, Liming
    Lai, Peng
    Song, Fengli
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 88 - 104
  • [10] Feature screening for ultrahigh dimensional binary data
    Guan, Guoyu
    Shan, Na
    Guo, Jianhua
    [J]. STATISTICS AND ITS INTERFACE, 2018, 11 (01) : 41 - 50