Knowledge discovery from numerical data

被引:4
|
作者
Morita, C [1 ]
Tsukimoto, H [1 ]
机构
[1] Toshiba Corp, Ctr Res & Dev, Syst & Software Res Labs, Saiwai Ku, Kawasaki, Kanagawa 210, Japan
关键词
continuous Boolean functions; multilinear functions; Kullback-Leibler information;
D O I
10.1016/S0950-7051(98)00040-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the authors previously presented an algorithm for discovering understandable propositions from numerical data. The algorithm consists of normalization, multiple regression analysis and the approximation of multilinear functions by continuous Boolean functions. Continuous Boolean functions are included in the space of multilinear functions. The space of multilinear functions can be corresponded to the space of probability distributions, using the principle of indifference. The distance between two probability distributions is described by Kullback-Leibler (KL) information. Thus, the distance between multilinear functions and continuous Boolean functions is described using KL information. However, since the approximation algorithm is exponential in computational complexity, this paper presents a polynomial approximation algorithm. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:413 / 419
页数:7
相关论文
共 50 条
  • [1] Knowledge discovery from data?
    Pazzani, MJ
    [J]. IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 2000, 15 (02): : 10 - 13
  • [2] Knowledge discovery from data streams
    Gama, Joao
    Aguilar-Ruiz, Jesus
    Klinkenberg, Ralf
    [J]. INTELLIGENT DATA ANALYSIS, 2008, 12 (03) : 251 - 252
  • [3] Knowledge discovery from data streams
    Gama, Joao
    Aguilar-Ruiz, Jesus
    [J]. INTELLIGENT DATA ANALYSIS, 2007, 11 (01) : 1 - 2
  • [4] Knowledge Discovery from Data Mining
    Lan, Tian
    [J]. EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 4642 - 4645
  • [5] Knowledge discovery from diagrammatically represented data
    Anderson, M
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 19 - 26
  • [6] Knowledge discovery from data streams Introduction
    Gama, Joao
    Ganguly, Auroop
    Omitaomu, Olufemi
    Vatsavai, Raju
    Gaber, Mohamed
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 403 - 404
  • [7] Traffic Knowledge Discovery from AIS Data
    Pallotta, Giuliana
    Vespe, Michele
    Bryan, Karna
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1996 - 2003
  • [8] Collaborative knowledge discovery & data mining: From knowledge to experience
    Horeis, Timo
    Sick, Bernhard
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 421 - 428
  • [9] Knowledge Discovery from Social Graph Data
    Braun, Peter
    Cuzzocrea, Alfredo
    Leung, Carson K.
    Pazdor, Adam G. M.
    Tran, Kimberly
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE KES-2016, 2016, 96 : 682 - 691
  • [10] Knowledge discovery from imbalanced and noisy data
    Van Hulse, Jason
    Khoshgoftaar, Taghi
    [J]. DATA & KNOWLEDGE ENGINEERING, 2009, 68 (12) : 1513 - 1542