Semiparametric Inference for the Functional Cox Model

被引:6
|
作者
Hao, Meiling [1 ]
Liu, Kin-yat [2 ]
Xu, Wei [3 ]
Zhao, Xingqiu [4 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China
[2] Hang Seng Univ Hong Kong, Dept Math & Stat, Hong Kong, Peoples R China
[3] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[4] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 加拿大健康研究院;
关键词
Functional Cox model; Joint Bahadur representation; Partial likelihood ratio test; Penalized partial likelihood; Right-censored data; REGRESSION-MODELS; LIKELIHOOD;
D O I
10.1080/01621459.2019.1710155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies penalized semiparametric maximum partial likelihood estimation and hypothesis testing for the functional Cox model in analyzing right-censored data with both functional and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional and infinite-dimensional estimators is a very challenging theoretical problem due to the complexity of semiparametric models. For the problem, we construct the Sobolev space equipped with a special inner product and discover a new joint Bahadur representation of estimators of the unknown slope function and coefficients. Using this key tool, we establish the asymptotic joint normality of the proposed estimators and the weak convergence of the estimated slope function, and then construct local and global confidence intervals for an unknown slope function. Furthermore, we study a penalized partial likelihood ratio test, show that the test statistic enjoys the Wilks phenomenon, and also verify the optimality of the test. The theoretical results are examined through simulation studies, and a right-censored data example from the Improving Care of Acute Lung Injury Patients study is provided for illustration. for this article are available online.
引用
收藏
页码:1319 / 1329
页数:11
相关论文
共 50 条
  • [1] Statistical inference in functional semiparametric spatial autoregressive model
    Liu, Gaosheng
    Bai, Yang
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10890 - 10906
  • [2] Semiparametric Inference in a Genetic Mixture Model
    Li, Pengfei
    Liu, Yukun
    Qin, Jing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 1250 - 1260
  • [3] Semiparametric inference in a partial linear model
    Bhattacharya, PK
    Zhao, PL
    [J]. ANNALS OF STATISTICS, 1997, 25 (01): : 244 - 262
  • [4] Parametric and semiparametric inference for shape: the role of the scale functional
    Hallin, Marc
    Paindaveine, Davy
    [J]. STATISTICS & RISK MODELING, 2006, 24 (03) : 327 - 350
  • [5] Semiparametric inference with a functional-form empirical likelihood
    Sixia Chen
    Jae Kwang Kim
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 201 - 214
  • [6] Functional inference in semiparametric models using the piggyback bootstrap
    John R. Dixon
    Michael R. Kosorok
    Bee Leng Lee
    [J]. Annals of the Institute of Statistical Mathematics, 2005, 57 : 255 - 277
  • [7] Semiparametric inference with a functional-form empirical likelihood
    Chen, Sixia
    Kim, Jae Kwang
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (02) : 201 - 214
  • [8] Functional inference in semiparametric models using the piggyback bootstrap
    Dixon, JR
    Kosorok, MR
    Lee, BL
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (02) : 255 - 277
  • [9] Semiparametric inference in a GARCH-in-mean model
    Christensen, Bent Jesper
    Dahl, Christian M.
    Iglesias, Emma M.
    [J]. JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 458 - 472
  • [10] Semiparametric median residual life model and inference
    Ma, Yanyuan
    Yin, Guosheng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 665 - 679