Asymptotic normality of quadratic estimators

被引:9
|
作者
Robins, James M. [1 ,2 ]
Li, Lingling [1 ,2 ]
Tchetgen, Eric Tchetgen [1 ,2 ]
van der Vaart, Aad [3 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Cambridge, MA 02138 USA
[3] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
Quadratic functional; Projection estimator; Rate of convergence; U-statistic; CENTRAL LIMIT-THEOREMS; INTEGRAL FUNCTIONALS; U-STATISTICS; DENSITY; ORDER;
D O I
10.1016/j.spa.2016.04.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove conditional asymptotic normality of a class of quadratic U-statistics that are dominated by their degenerate second order part and have kernels that change with the number of observations. These statistics arise in the construction of estimators in high-dimensional semi- and non-parametric models, and in the construction of nonparametric confidence sets. This is illustrated by estimation of the integral of a square of a density or regression function, and estimation of the mean response with missing data. We show that estimators are asymptotically normal even in the case that the rate is slower than the square root of the observations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3733 / 3759
页数:27
相关论文
共 50 条