Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

被引:55
|
作者
Fayad, Ibrahim [1 ]
Baghdadi, Nicolas [1 ]
Guitet, Stephane [2 ]
Bailly, Jean-Stephane [3 ]
Herault, Bruno [4 ]
Gond, Valery [5 ]
El Hajj, Mahmoud [6 ]
Dinh Ho Tong Minh [1 ]
机构
[1] IRSTEA, UMR TETIS, 500 Rue Jean Francois Breton, F-34093 Montpellier 5, France
[2] ONF, R&D Dept, Cayenne, French Guiana
[3] AgroParisTech, UMR LISAH, 2 Pl Pierre Viala, F-34060 Montpellier, France
[4] INRA, UMR EcoFoG, BP 316, Kourou 97379, French Guiana
[5] CIRAD, UPR B&SEF, Campus Baillarguet, F-34398 Montpellier 5, France
[6] NOVELTIS, 153 Rue Lac, F-31670 Labege, France
关键词
Aboveground biomass mapping; LiDAR; ICESat GLAS; Forests; French Guiana; CARBON-DENSITY; LIDAR; VEGETATION; HEIGHT; SRTM; MAP; PREDICTION; RETRIEVAL; AIRBORNE; LANDSAT;
D O I
10.1016/j.jag.2016.07.015
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R-2=0.54, RMSE=48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain "wall-to-wall" AGB maps over French Guiana with an RMSE for the in situ AGB estimates of 50 Mg/ha and R-2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:502 / 514
页数:13
相关论文
共 50 条
  • [1] Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data
    Hu, Tianyu
    Zhang, YingYing
    Su, Yanjun
    Zheng, Yi
    Lin, Guanghui
    Guo, Qinghua
    [J]. REMOTE SENSING, 2020, 12 (10)
  • [2] Stratified aboveground forest biomass estimation by remote sensing data
    Latifi, Hooman
    Fassnacht, Fabian E.
    Hartig, Florian
    Berger, Christian
    Hernandez, Jaime
    Corvalan, Patricio
    Koch, Barbara
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 229 - 241
  • [3] Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation Using Remote Sensing Data
    Li, Yingchang
    Li, Mingyang
    Liu, Zhenzhen
    Li, Chao
    [J]. IEEE ACCESS, 2020, 8 : 128124 - 128139
  • [4] Remote sensing of aboveground forest biomass: A review
    Timothy, Dube
    Onisimo, Mutanga
    Cletah, Shoko
    Adelabu, Samuel
    Tsitsi, Bangira
    [J]. TROPICAL ECOLOGY, 2016, 57 (02) : 125 - 132
  • [5] Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data
    Yang, Qiuli
    Niu, Chunyue
    Liu, Xiaoqiang
    Feng, Yuhao
    Ma, Qin
    Wang, Xuejing
    Tang, Hao
    Guo, Qinghua
    [J]. GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [6] Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data
    Sun, Xiaofang
    Li, Bai
    Du, Zhengping
    Li, Guicai
    Fan, Zemeng
    Wang, Meng
    Yue, Tianxiang
    [J]. GEOCARTO INTERNATIONAL, 2021, 36 (14) : 1549 - 1564
  • [7] Combining remote sensing imagery and forest age inventory for biomass mapping
    Zheng, G.
    Chen, J. M.
    Tian, Qt
    Ju, W. M.
    Xia, X. Q.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2007, 85 (03) : 616 - 623
  • [8] Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data
    Naik, Parth
    Dalponte, Michele
    Bruzzone, Lorenzo
    [J]. REMOTE SENSING, 2021, 13 (07)
  • [9] Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques
    Bechu K. V. Yadav
    S. Nandy
    [J]. Environmental Monitoring and Assessment, 2015, 187
  • [10] Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques
    Yadav, Bechu K. V.
    Nandy, S.
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2015, 187 (05)