Biomedical Data Classification Using Supervised Classifiers and Ensemble Based Dictionaries

被引:0
|
作者
Tuysuzoglu, Goksu [1 ]
Yaslan, Yusuf
机构
[1] Dokuz Eylul Univ, Bilgisayar Muhendisligi Bolumu, Izmir, Turkey
关键词
dictionary learning; bin-medical data; classifier ensemble; classification algorithms;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nowadays, along with the development of information technologies, storage and analysis of biomedical datasets are easy in health sector. in this area, Machine Learning methods provide a great contribution for evaluation and interpretation of data. In this paper, in addition to Support Vector Machines, Decision Tree, K-Nearest Neighbors, Naive Bayes and Dictionary Learning methods, Random Feature Subspaces (RDL) and Random Instance Subspaces (BDL) methods which are the ensembles of Dictionary Learning are used in biomedical data classification. In the test results, SVM and Dictionary Learning methods, RDL and BDL, which are generated using random feature/instance subspaces achieve optimum accuracy results.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dynamic cattle behavioural classification using supervised ensemble classifiers
    Dutta, Ritaban
    Smith, Daniel
    Rawnsley, Richard
    Bishop-Hurley, Greg
    Hills, James
    Timms, Greg
    Henry, Dave
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 111 : 18 - 28
  • [2] AdaBoost Ensemble Data Classification based on Diversity of Classifiers
    Thammasiri, Dech
    Meesad, Phayung
    [J]. FUTURE INFORMATION TECHNOLOGY, 2011, 13 : 106 - 111
  • [3] Adaboost Ensemble Data Classification Based on Diversity of classifiers
    Thammasiri, Dech
    Meesad, Phayung
    [J]. MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 3682 - +
  • [4] Ensemble classifiers for biomedical data: performance evaluation
    Elshazly, Hanaa Ismail
    Elkorany, Abeer Mohamed
    Hassanien, Aboul Ella
    Azar, Ahmad Taher
    [J]. 2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2013, : 184 - 189
  • [5] A Safe Semi-supervised Classification Algorithm Using Multiple Classifiers Ensemble
    Zhao, Jianhua
    Liu, Ning
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2603 - 2616
  • [6] A Safe Semi-supervised Classification Algorithm Using Multiple Classifiers Ensemble
    Jianhua Zhao
    Ning Liu
    [J]. Neural Processing Letters, 2021, 53 : 2603 - 2616
  • [7] Using Dictionaries for Biomedical Text Classification
    Romero, R.
    Iglesias, E. L.
    Borrajo, L.
    Marey, C. M. Redondo
    [J]. 5TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2011), 2011, 93 : 365 - +
  • [8] Biomedical Data Ensemble Classification using Random Projections
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 166 - 172
  • [9] An ensemble of cluster-based classifiers for semi-supervised classification of non-stationary data streams
    Hosseini, Mohammad Javad
    Gholipour, Ameneh
    Beigy, Hamid
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 46 (03) : 567 - 597
  • [10] Ensemble Classifiers based on Kernel ICA for Cancer Data Classification
    Zhou, Jin
    Lin, Yongzheng
    Chen, Yuehui
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 1596 - 1600