Variance reduction for discretised diffusions via regression

被引:6
|
作者
Belomestny, Denis [1 ,2 ]
Haefner, Stefan [3 ]
Nagapetyan, Tigran [4 ]
Urusov, Mikhail [1 ]
机构
[1] Univ Duisburg Essen, Essen, Germany
[2] RAS, IITP, Moscow, Russia
[3] PricewaterhouseCoopers GmbH, Frankfurt, Germany
[4] Univ Oxford, Oxford, England
基金
俄罗斯科学基金会;
关键词
Control variates; Monte Carlo methods; Regression methods; Stochastic differential equations; Weak schemes; SDES;
D O I
10.1016/j.jmaa.2017.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a novel approach towards variance reduction for discretised diffusion processes. The proposed approach involves specially constructed control variates and allows for a significant reduction in the variance for the terminal functionals. In this way the complexity order of the standard Monte Carlo algorithm (epsilon(-3) in the case of a first order scheme and epsilon(-2.5) in the case of a second order scheme) can be reduced down to epsilon(-2+delta) for any delta is an element of [0, 0.25) with epsilon being the precision to be achieved. These theoretical results are illustrated by several numerical examples. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 50 条
  • [1] PRACTICAL VARIANCE REDUCTION VIA REGRESSION FOR SIMULATING DIFFUSIONS
    Milstein, G. N.
    Tretyakov, M. V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 887 - 910
  • [2] Variance reduction for diffusions
    Hwang, Chii-Ruey
    Normand, Raoul
    Wu, Sheng-Jhih
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) : 3522 - 3540
  • [3] VARIANCE REDUCTION FOR SIMULATED DIFFUSIONS
    NEWTON, NJ
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (06) : 1780 - 1805
  • [4] On the stochastic elasticity of variance diffusions
    Kim, Jeong-Hoon
    Yoon, Ji-Hun
    Lee, Jungwoo
    Choi, Sun-Yong
    [J]. ECONOMIC MODELLING, 2015, 51 : 263 - 268
  • [5] Estimation of error variance via ridge regression
    Liu, X.
    Zheng, S.
    Feng, X.
    [J]. BIOMETRIKA, 2020, 107 (02) : 481 - 488
  • [6] Variance reduction via lattice rules
    L'Ecuyer, P
    Lemieux, C
    [J]. MANAGEMENT SCIENCE, 2000, 46 (09) : 1214 - 1235
  • [7] Combining bias and variance reduction techniques for regression trees
    Suen, YL
    Melville, P
    Mooney, RJ
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 741 - 749
  • [8] Variance reduction by antithetic random numbers of Monte Carlo methods for unrestricted and reflecting diffusions
    Costantini, C
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 51 (1-2) : 1 - 17
  • [9] Optimal variance stopping with linear diffusions
    Gad, Kamille Sofie Tagholt
    Matomaki, Pekka
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) : 2349 - 2383
  • [10] Variance estimator for fractional diffusions with variance and drift depending on time
    Berzin, Corinne
    Latour, Alain
    Leon, Jose R.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 926 - 1016