On T-groups, supersolvable groups, and maximal subgroups

被引:11
|
作者
Kaplan, Gil [1 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Sch Comp Sci, IL-61083 Tel Aviv, Israel
关键词
T-groups; Non-normal maximal subgroups; Lattice generated by the maximal subgroups; Supersolvable groups; IM-groups; FINITE-GROUPS; INTERSECTION; NORMALITY;
D O I
10.1007/s00013-010-0207-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is called a T-group if all its subnormal subgroups are normal. Finite T-groups have been widely studied since the seminal paper of Gaschutz (J. Reine Angew. Math. 198 (1957), 87-92), in which he described the structure of finite solvable T-groups. We call a finite group G an NNM-group if each non-normal subgroup of G is contained in a non-normal maximal subgroup of G. Let G be a finite group. Using the concept of NNM-groups, we give a necessary and sufficient condition for G to be a solvable T-group (Theorem 1), and sufficient conditions for G to be supersolvable (Theorems 5, 7 and Corollary 6).
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [1] On T-groups, supersolvable groups, and maximal subgroups
    Gil Kaplan
    [J]. Archiv der Mathematik, 2011, 96 : 19 - 25
  • [2] ON SUPERSOLVABLE GROUPS WHOSE MAXIMAL SUBGROUPS OF THE SYLOW SUBGROUPS ARE SUBNORMAL
    Guo, Pengfei
    Xiu, Xingqiang
    Xu, Guangjun
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 315 - 322
  • [3] SUBGROUPS OF FINITE INDEX IN T-GROUPS
    HEINEKEN, H
    LENNOX, JC
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4B (03): : 829 - 841
  • [4] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Alexander Moretó
    [J]. Monatshefte für Mathematik, 2021, 195 : 497 - 500
  • [5] ON NILPOTENT AND SUPERSOLVABLE SUBGROUPS OF FINITE GROUPS
    CHUNIKHI.SA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1970, 193 (06): : 1255 - &
  • [6] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Moreto, Alexander
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 195 (03): : 497 - 500
  • [7] T-GROUPS AND THEIR GEOMETRY
    CRONHEIM, A
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) : 1 - &
  • [8] Generalisations of T-groups
    Feldman, Arnold
    [J]. NOTE DI MATEMATICA, 2013, 33 (01): : 103 - 106
  • [9] HAZARDS OF T-GROUPS
    不详
    [J]. JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1969, 210 (04): : 719 - &
  • [10] Finite groups with supersolvable subgroups of even order
    Meng, Wei
    Lu, Jiakuan
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (02) : 1059 - 1064