Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure

被引:5
|
作者
Jiang Hai-Bo [1 ]
Zhang Li-Ping [1 ]
Yu Jian-Jiang [2 ]
机构
[1] Yancheng Teachers Univ, Sch Math, Yancheng 224002, Peoples R China
[2] Yancheng Teachers Univ, Sch Informat Sci & Technol, Yancheng 224002, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsively coupled oscillators; bifurcation; periodic solutions; Floquet theory; PERIODIC-SOLUTIONS; SYNCHRONIZATION; BIFURCATION; CHAOS; VAN; NETWORKS; SYSTEMS;
D O I
10.1088/1674-1056/24/2/020502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincare map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincare map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure
    姜海波
    张丽萍
    于建江
    Chinese Physics B, 2015, 24 (02) : 91 - 97
  • [2] The dynamics of a cyclic ring of coupled duffing oscillators
    Folley, Christopher
    Bajaj, Anil K.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 2047 - 2054
  • [3] Dynamics of a Large Ring of Unidirectionally Coupled Duffing Oscillators
    Perlikowski, P.
    Yanchuk, S.
    Wolfrum, M.
    Stefanski, A.
    Kapitaniak, Tomasz
    IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 63 - 72
  • [4] Dynamics of a ring of three unidirectionally coupled Duffing oscillators with time-dependent damping
    Barba-Franco, J. J.
    Gallegos, A.
    Jaimes-Reategui, R.
    Gerasimova, S. A.
    Pisarchik, A. N.
    EPL, 2021, 134 (03)
  • [5] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Caneco, Acilina
    Gracio, Clara
    Rocha, J. Leonel
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 102 - 111
  • [6] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Acilina Caneco
    Clara Grácio
    J Leonel Rocha
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 102 - 111
  • [7] Dynamics of a ring of three fractional-order Duffing oscillators
    Barba-Franco, J. J.
    Gallegos, A.
    Jaimes-Reategui, R.
    Pisarchik, A. N.
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [8] Modulation effects on the dynamics of a ring of three Duffing oscillators coupled unidirectionally with time-dependent damping
    Hernandez-Cedillo, J. C.
    Gallegos, A.
    Urenda-Cazares, E.
    Barba-Franco, J. J.
    NONLINEAR DYNAMICS, 2025, 113 (01) : 313 - 327
  • [9] Stability of the 3-torus solution in a ring of coupled Duffing oscillators
    L. Borkowski
    A. Stefanski
    The European Physical Journal Special Topics, 2020, 229 : 2249 - 2259
  • [10] Contraction theory based synchronization analysis of impulsively coupled oscillators
    Jiang, Haibo
    Bi, Qinsheng
    NONLINEAR DYNAMICS, 2012, 67 (01) : 781 - 791