A Comprehensive High Order Type 2 Fuzzy Time Series Forecasting Model

被引:0
|
作者
Zhang, Encheng [1 ]
Wang, Degang [1 ]
Li, Hongxing [1 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
关键词
Fuzzy time series; Type 2 time series; Support vector machine; INFORMATION GRANULES; ENROLLMENTS; INTERVALS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a hybrid high order Type 2 fuzzy time series model by combining support vector machine (SVM) with adaptive expectation model. We use SVM model to forecast the index of the fuzzy set of the predicted time. Particle swarm optimization (PSO) algorithm is used to adjust the lengths of intervals of the universe of discourse which are employed in forecasting. Moreover, we also propose a new method to calculate the weights of fuzzy sets for compensating the presence of bias in the forecasting. Further, we apply an modified adaptive model to adjust the forecasting value in the defuzzification stage. We utilize the proposed model to forecast the daily Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and Index 100 for the stocks and bonds exchange market of Istanbul (IMKB). The experimental results illustrate the validity of the method.
引用
收藏
页码:6681 / 6686
页数:6
相关论文
共 50 条
  • [1] Forecasting fuzzy time series on a heuristic high-order model
    Own, CM
    Yu, PT
    CYBERNETICS AND SYSTEMS, 2005, 36 (07) : 705 - 717
  • [2] A Type 2 fuzzy time series model for stock index forecasting
    Huarng, K
    Yu, HK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) : 445 - 462
  • [3] Forecasting enrollments with high-order fuzzy time series
    Tsai, Chao-Chih
    Wu, Shun-Jyh
    Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 2000, : 196 - 200
  • [4] High Order Fuzzy Time Series for Exchange Rates Forecasting
    Abdullah, Lazim
    Taib, Imran
    2011 3RD CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), 2011, : 1 - 5
  • [5] Forecasting enrollments with high-order fuzzy time series
    Tsai, CC
    Wu, SJ
    PEACHFUZZ 2000 : 19TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 2000, : 196 - 200
  • [6] High-order fuzzy time series forecasting model for advance prediction of temperature
    Tripathi, Alok
    Pannu, Husanbir Singh
    2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 2, 2016, : 531 - 536
  • [7] A high-order fuzzy time series forecasting model for internet stock trading
    Chen, Mu-Yen
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 37 : 461 - 467
  • [8] A novel probabilistic intuitionistic fuzzy set based model for high order fuzzy time series forecasting
    Pattanayak, Radha Mohan
    Behera, H.S.
    Panigrahi, Sibarama
    Engineering Applications of Artificial Intelligence, 2021, 99
  • [9] A novel probabilistic intuitionistic fuzzy set based model for high order fuzzy time series forecasting
    Pattanayak, Radha Mohan
    Behera, H. S.
    Panigrahi, Sibarama
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 99
  • [10] Multi-factor high-order intuitionistic fuzzy time series forecasting model
    Ya'nan Wang
    Yingjie Lei
    Yang Lei
    Xiaoshi Fan
    Journal of Systems Engineering and Electronics, 2016, 27 (05) : 1054 - 1062