Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches

被引:8
|
作者
Mirzavand, R. [1 ]
Abdipour, A. [1 ]
Moradi, G. [1 ]
Movahhedi, M. [2 ]
机构
[1] Amirkabir Univ Technol, Microwave Mm Wave & Wireless Commun Res Lab, Dept Elect Engn, Radio Commun Ctr Excellence, Tehran, Iran
[2] Shahid Bahonar Univ Kerman, Dept Elect Engn, Kerman, Iran
关键词
FREQUENCY ACTIVE DEVICES; PERFECTLY MATCHED LAYER; ADI-FDTD METHOD; EQUATIONS; COLLOCATION; SOLVER; MODEL;
D O I
10.1049/iet-map.2010.0281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new numerical method for the full-wave physical modelling of semiconductor devices using a combination of the meshless and finite-difference time-domain (FDTD) approaches is described. The model consists of the electron equations for the active part and Maxwell's equations for the electromagnetic effects, which describe the complete behaviour of a high-frequency active device. The unconditionally stable method by using a semi-implicit meshless approach for the active model and the alternating-direction implicit (ADI)-FDTD approach for electromagnetic model leads to a significant decrease in the full-wave simulation time. Using this technique, we can achieve a 99% reduction in the computation time and obtain an acceptable degree of accuracy in comparison with conventional FDTD approaches. As the first step in the investigation, the authors use the electron flow equations without holes and recombination process as the semiconductor equations.
引用
收藏
页码:685 / 691
页数:7
相关论文
共 50 条
  • [1] Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures
    Zhao, Yan
    Argyropoulos, Christos
    Hao, Yang
    [J]. OPTICS EXPRESS, 2008, 16 (09): : 6717 - 6730
  • [2] FULL-WAVE ANALYSIS OF COPLANAR WAVEGUIDE AND SLOTLINE USING THE TIME-DOMAIN FINITE-DIFFERENCE METHOD
    LIANG, GC
    LIU, YW
    MEI, KK
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1989, 37 (12) : 1949 - 1957
  • [3] Locally one-dimensional finite-difference time-domain scheme for the full-wave semiconductor device analysis
    Mirzavand, R.
    Abdipour, A.
    Schilders, W. H. A.
    Moradi, G.
    Movahhedi, M.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2012, 6 (02) : 78 - 84
  • [4] FULL-WAVE ANALYSIS OF PROPAGATION CHARACTERISTICS OF A THROUGH HOLE USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    MAEDA, S
    KASHIWA, T
    FUKAI, I
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (12) : 2154 - 2159
  • [5] Simulation of optical devices using parallel finite-difference time-domain methods
    Li, K
    Kong, FM
    Mei, LM
    Liu, X
    [J]. PASSIVE COMPONENTS AND FIBER-BASED DEVICES II, PT 1 AND 2, 2005, 6019 : U627 - U634
  • [6] Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method
    Narahara, Koichi
    [J]. INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2012, 2012
  • [7] Full-wave finite-difference time-domain formulation for gyromagnetic ferrite media magnetized in arbitrary direction
    Sanada, A
    Okubo, K
    Awai, I
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (07) : 931 - 936
  • [8] A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-element time-domain methods
    Koh, D
    Lee, HB
    Itoh, T
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (12) : 2217 - 2223
  • [9] Finite-Difference Time-Domain Analysis of Terahertz Devices
    Shibayama, J.
    Yamauchi, J.
    Nakano, H.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, : 367 - 368
  • [10] Full-wave parallel dispersive finite-difference time-domain modeling of three-dimensional electromagnetic cloaking structures
    Zhao, Yan
    Hao, Yang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) : 7300 - 7312