Holographic non-Gaussianity

被引:60
|
作者
McFadden, Paul [1 ]
Skenderis, Kostas [1 ,2 ,3 ]
机构
[1] Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[2] Gravitat & Astroparticle Phys Amsterdam, NL-1090 GL Amsterdam, Netherlands
[3] Korteweg de Vries Inst Math, NL-1090 GL Amsterdam, Netherlands
关键词
inflation; string theory and cosmology; non-gaussianity; 3-POINT CORRELATION-FUNCTION; RENORMALIZATION; PERTURBATIONS; EVOLUTION; SPACETIME;
D O I
10.1088/1475-7516/2011/05/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographic ally dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable. equilateral form with f(NL)(equil) = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RC flows, which should have applications out the remit of this work.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Thermal non-Gaussianity in holographic cosmology
    Ling, Yi
    Wu, Jian-Pin
    [J]. PHYSICS LETTERS B, 2009, 675 (02) : 151 - 154
  • [2] Inhomogeneous non-gaussianity
    Byrnes, Christian T.
    Nurmi, Sami
    Tasinato, Gianmassimo
    Wands, David
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (03):
  • [3] Resonant non-gaussianity
    Flauger, Raphael
    Pajer, Enrico
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (01):
  • [4] Detection of non-Gaussianity
    Ledwina, Teresa
    Wylupek, Grzegorz
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3480 - 3497
  • [5] Hilltop non-gaussianity
    Kawasaki, Masahiro
    Nakayama, Kazunori
    Takahashi, Fuminobu
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (01):
  • [6] Primordial Non-Gaussianity
    Celoria, M.
    [J]. GRAVITATIONAL WAVES AND COSMOLOGY, 2020, 200 : 179 - 215
  • [7] Emergence of Non-Gaussianity in Turbulence
    Wilczek, Michael
    Vlaykov, Dimitar G.
    Lalescu, Cristian C.
    [J]. PROGRESS IN TURBULENCE VII, 2017, 196 : 3 - 9
  • [8] Non-Gaussianity in multifield inflation
    Bernardeau, F
    Uzan, JP
    [J]. PHYSICAL REVIEW D, 2002, 66 (10)
  • [9] Non-Gaussianity from inflation
    Bartolo, N
    Matarrese, S
    Riotto, A
    [J]. PHYSICAL REVIEW D, 2002, 65 (10)
  • [10] Non-Gaussianity in DHOST inflation
    Brax, Philippe
    Lazanu, Andrei
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (01):