Advanced preprocessing techniques for linear and quadratic programming

被引:30
|
作者
Mészáros, C
Suhl, UH
机构
[1] Free Univ Berlin, Inst Prod Wirtschaftsinformat & OR, D-14195 Berlin, Germany
[2] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
关键词
linear programming; presolve; simplex and interior point methods;
D O I
10.1007/s00291-003-0130-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper presents an overview on the preprocessing techniques of linear programming. A new reduction technique is also introduced and the presolve is extended to mixed integer and quadratic programming problems. Numerical results are presented to demonstrate the impact of presolving in interior point and simplex implementations. The demonstrative results are given on large-scale linear, mixed integer and quadratic programming test problems.
引用
收藏
页码:575 / 595
页数:21
相关论文
共 50 条
  • [1] Advanced preprocessing techniques for linear and quadratic programming
    Cs Mészáros
    U. H. Suhl
    [J]. OR Spectrum, 2003, 25 : 575 - 595
  • [2] Preprocessing for quadratic programming
    Gould, N
    Toint, PL
    [J]. MATHEMATICAL PROGRAMMING, 2004, 100 (01) : 95 - 132
  • [3] Preprocessing for quadratic programming
    Nick Gould
    Philippe L. Toint
    [J]. Mathematical Programming, 2004, 100 : 95 - 132
  • [4] On the Space Complexity of Linear Programming with Preprocessing
    Kalai, Yael Tauman
    Raz, Ran
    Regev, Oded
    [J]. ITCS'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INNOVATIONS IN THEORETICAL COMPUTER SCIENCE, 2016, : 293 - 300
  • [5] QUADRATIC AS PARAMETRIC LINEAR PROGRAMMING
    TOWNSLEY, RJ
    CANDLER, W
    [J]. NAVAL RESEARCH LOGISTICS QUARTERLY, 1972, 19 (01): : 183 - &
  • [6] Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques
    Xia, Wei
    Vera, Juan
    Zuluaga, Luis F.
    [J]. INFORMS JOURNAL ON COMPUTING, 2020, 32 (01) : 40 - 56
  • [7] Comparison between Optimal Control Allocation with Mixed Quadratic & Linear Programming Techniques
    Grechi, Simone
    Caiti, Andrea
    [J]. IFAC PAPERSONLINE, 2016, 49 (23): : 147 - 152
  • [8] Linear pencils and quadratic programming problems with a quadratic constraint
    Zerbo, Santiago Gonzalez
    Maestripieri, Alejandra
    Peria, Francisco Martinez
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 665 : 12 - 35
  • [9] On solving linear and quadratic programming problems
    Kabe, D.G.
    [J]. Industrial Mathematics, 1992, 42 (pt 2): : 67 - 77
  • [10] Preprocessing in stochastic programming. The case of linear programs
    Wallace, Stein W.
    Wets, Roger J.-B.
    [J]. ORSA journal on computing, 1992, 4 (01): : 45 - 59