Recursion relations for the extended Krylov subspace method

被引:28
|
作者
Jagels, Carl [1 ]
Reichel, Lothar [2 ]
机构
[1] Hanover Coll, Dept Math & Comp Sci, Hanover, IN 47243 USA
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Extended Krylov subspace; Orthogonal Laurent polynomial; Recursion relation; Matrix function evaluation; Rational Gauss quadrature; MATRIX FUNCTIONS; SQUARE-ROOT; APPROXIMATION;
D O I
10.1016/j.laa.2010.08.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evaluation of matrix functions of the form f (A)v, where A is a large sparse or structured symmetric matrix, f is a nonlinear function, and v is a vector, is frequently subdivided into two steps: first an orthonormal basis of an extended Krylov subspace of fairly small dimension is determined, and then a projection onto this subspace is evaluated by a method designed for small problems. This paper derives short recursion relations for orthonormal bases of extended Krylov subspaces of the type K-m,K-mi+1 (A) = span {A(-m+1) v,...,A(-1) v, v, A v, ... ,A(mi) v}, m = 1,2,3,.., with i a positive integer, and describes applications to the evaluation of matrix functions and the computation of rational Gauss quadrature rules. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1716 / 1732
页数:17
相关论文
共 50 条
  • [1] THE HAMILTONIAN EXTENDED KRYLOV SUBSPACE METHOD
    Benner, Peter
    Fassbender, Heike
    Senn, Michel-Niklas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 572 - 606
  • [2] The extended Krylov subspace method and orthogonal Laurent polynomials
    Jagels, Carl
    Reichel, Lothar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 441 - 458
  • [3] Convergence analysis of the extended Krylov subspace method for the Lyapunov equation
    L. Knizhnerman
    V. Simoncini
    Numerische Mathematik, 2011, 118 : 567 - 586
  • [4] Convergence analysis of the extended Krylov subspace method for the Lyapunov equation
    Knizhnerman, L.
    Simoncini, V.
    NUMERISCHE MATHEMATIK, 2011, 118 (03) : 567 - 586
  • [5] A new investigation of the extended Krylov subspace method for matrix function evaluations
    Knizhnerman, L.
    Simoncini, V.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 615 - 638
  • [6] A Flexible Extended Krylov Subspace Method for Approximating Markov Functions of Matrices
    Xu, Shengjie
    Xue, Fei
    MATHEMATICS, 2023, 11 (20)
  • [7] Extended Krylov subspace for parameter dependent systems
    Simoncini, V.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (05) : 550 - 560
  • [8] Stochastic based extended Krylov subspace method for power/ground network analysis
    Yuan, Xiaolong
    Fan, Jeffrey
    Liu, Bao
    Tan, Sheldon X. -D.
    ASICON 2007: 2007 7TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2007, : 1100 - 1103
  • [9] Power System Dynamic Model Reduction Based on Extended Krylov Subspace Method
    Zhu, Zexiang
    Geng, Guangchao
    Jiang, Quanyuan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (06) : 4483 - 4494
  • [10] Extended Krylov Subspace Methods for Transient Wavefield Problems
    Remis, R. F.
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 1056 - 1060