Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information

被引:4
|
作者
Niu Ming-Li [1 ]
Wang Yue-Ming [1 ]
Li Zhi-Jian [1 ]
机构
[1] Shanxi Univ, Coll Phys & Elect Engn, Inst Theoret Phys,Collaborat Innovat Ctr Extreme, State Key Lab Quantum Opt & Quantum Opt Device, Taiyuan 030006, Peoples R China
关键词
quantum Fisher information; parameter estimation; quantum Cramer-Rao bound; Jaynes-Cummings model; ERROR;
D O I
10.7498/aps.71.20212029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum parameter estimation is one of the most important applications in quantum metrology. The basictheory of quantum parameter estimation???quantum Cramer-Rao bound???shows that the precision limit ofquantum parameter estimation is directly related to quantum Fisher information. Therefore quantum Fisherinformation is extremely important in the quantum parameter estimation. In this paper we use quantumparameter estimation theory to estimate the coupling constant of the Jaynes-Cummings model with largedetuning. The initial probing state is the direct product state of qubit and radiation field in which Fock state,thermal state and coherent state are taken into account respectively. We calculate the quantum Fisherinformation of the hybrid system as well as qubit and radiation field for each probing state after the parameterevolution under the Hamiltonian of the Jaynes-Cummings model with large detuning. The results show that thequantum Fisher information increases monotonically with the average photon number increasing. The optimaldetection state is that when the qubit system is in the equal weight superposition of the ground and the excitedstate, at this time the quantum Fisher information always reaches a maximum value, When the radiation fieldof probing state is Fock state or the thermal state, the information about the estimated parameter is includedonly in the qubit. The estimation accuracy of the coupling constant with thermal state or coherent state ishigher than that with Fock state
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Generalized uncertainty relations: Theory, examples, and Lorentz invariance
    Braunstein, SL
    Caves, CM
    Milburn, GJ
    [J]. ANNALS OF PHYSICS, 1996, 247 (01) : 135 - 173
  • [2] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [3] Experimental Estimation of Entanglement at the Quantum Limit
    Brida, Giorgio
    Degiovanni, Ivo Pietro
    Florio, Angela
    Genovese, Marco
    Giorda, Paolo
    Meda, Alice
    Paris, Matteo G. A.
    Shurupov, Alexander
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [4] Theory of statistical estimation.
    Fisher, RA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 : 700 - 725
  • [5] Gabbrielli M, 2018, ARXIV 181010537 QUAN
  • [6] Genoni M G, 2012, EUR PHYS J SPEC, V10, P1140
  • [7] Non-orthogonal bases for quantum metrology
    Genoni, Marco G.
    Tufarelli, Tommaso
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [8] Optical Phase Estimation in the Presence of Phase Diffusion
    Genoni, Marco G.
    Olivares, Stefano
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (15)
  • [9] Optimal estimation of entanglement
    Genoni, Marco G.
    Giorda, Paolo
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2008, 78 (03):
  • [10] Enhancement of parameter estimation by Kerr interaction
    Genoni, Marco G.
    Invernizzi, Carmen
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):