On Lp integrability and convergence of trigonometric series

被引:19
|
作者
Yu, D. S. [1 ,2 ]
Zhou, P. [2 ]
Zhou, S. P. [2 ,3 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
[3] Zhejiang Sci Tech Univ, Xiasha Econ DEv Area, Inst Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Fourier series; L-p integrability; modulus of continuity; mean value bounded variation sequences;
D O I
10.4064/sm182-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first give a necessary and sufficient condition for x(-gamma)phi(x) is an element of L-p, 1 < p < infinity, 1/p - 1 < gamma < 1/p, where phi(x) is the sum of either Sigma(infinity)(k=1) a(k) cos kx or Sigma(infinity)(k=1) b(k) sin kx, under the condition that {lambda(n)} (where lambda(n) is a(n) or b(n) respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients lambda(n) and the sum function phi(x) under the condition that {lambda(n)} is an element of MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of phi(x) in L-p norm.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条