Recurrent neuro-fuzzy modeling and fuzzy MDPP control for flexible servomechanisms

被引:2
|
作者
Lin, CS
Yang, TC
Jou, YC
Lin, LC [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Taichung, Taiwan
[2] Chung Shan Inst Sci & Technol, Lungtan, Taiwan
[3] Yuan Ze Univ, Dept Mech Engn, Taoyuan, Taiwan
关键词
recurrent neuro-fuzzy model; TS fuzzy model; RLS algorithm; fuzzy MDPP control; servomechanism; flexibility; friction;
D O I
10.1023/A:1027339220324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the nonlinear system identification and control for flexible servomechanisms. A multi-step-ahead recurrent neuro-fuzzy model consisting of local linear ARMA (autoregressive moving average) models with bias terms is suggested for approximating the dynamic behavior of a servomechanism including the effects of flexibility and friction. The RLS ( recursive least squares) algorithm is adopted for obtaining the optimal consequent parameters of the rules. Within each fuzzy operating region, a local MDPP ( minimum degree pole placement) control law with integral action can be constructed based on the estimated local model. Then a fuzzy controller composed of these local MDPP controls can be easily constructed for the servomechanism. The techniques are illustrated using computer simulations.
引用
收藏
页码:213 / 235
页数:23
相关论文
共 50 条
  • [1] Recurrent Neuro-Fuzzy Modeling and Fuzzy MDPP Control for Flexible Servomechanisms
    Chorng-Shyan Lin
    Tachung Yang
    Yeong-Chau Jou
    Lih-Chang Lin
    [J]. Journal of Intelligent and Robotic Systems, 2003, 38 : 213 - 235
  • [2] NEURO-FUZZY MODELING AND CONTROL
    JANG, JSR
    SUN, CT
    [J]. PROCEEDINGS OF THE IEEE, 1995, 83 (03) : 378 - 406
  • [3] Adaptive neuro-fuzzy control of a flexible manipulator
    Tian, LF
    Collins, C
    [J]. MECHATRONICS, 2005, 15 (10) : 1305 - 1320
  • [4] Recurrent neuro-fuzzy modeling of a wastewater treatment plant
    Sainz, GI
    Fuente, MJ
    Vega, P
    [J]. EUROPEAN JOURNAL OF CONTROL, 2004, 10 (01) : 84 - 96
  • [5] Recurrent neuro-fuzzy systems
    Isik, C
    Farrokhi, M
    [J]. 1997 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1997, : 362 - 366
  • [6] Flexible neuro-fuzzy systems
    Rutkowski, L
    Cpalka, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (03): : 554 - 574
  • [7] Recurrent neuro-fuzzy networks for nonlinear process modeling
    Zhang, J
    Morris, AJ
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 313 - 326
  • [8] Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
    孙涛
    卫东
    曹广益
    朱新坚
    [J]. Journal of Shanghai Jiaotong University(Science), 2005, (03) : 274 - 279
  • [9] Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks
    Zhang, J
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 417 - 427
  • [10] On the use of recurrent neuro-fuzzy networks for predictive control
    Sadeghian, AR
    Lavers, JD
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 233 - 238