A proximal point method for the variational inequality problem in Banach spaces

被引:58
|
作者
Burachik, RS [1 ]
Scheimberg, S [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, IM, BR-21945970 Rio De Janeiro, Brazil
关键词
maximal monotone operators; proximal point algorithm; Banach spaces; convergence; algorithmic scheme;
D O I
10.1137/S0363012998339745
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we prove well-definedness and weak convergence of the generalized proximal point method when applied to the variational inequality problem in reflexive Banach spaces. The proximal version we consider makes use of Bregman functions, whose original definition for finite dimensional spaces has here been properly extended to our more general framework.
引用
收藏
页码:1633 / 1649
页数:17
相关论文
共 50 条
  • [1] A Method for Solving the Variational Inequality Problem and Fixed Point Problems in Banach Spaces
    Khuangsatung, Wongvisarut
    Kangtunyakarn, Atid
    TAMKANG JOURNAL OF MATHEMATICS, 2022, 53 (01): : 23 - 36
  • [2] An inexact interior point proximal method for the variational inequality problem
    Burachik, Regina S.
    Lopes, Jurandir O.
    Da Silva, Geci J. P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2009, 28 (01): : 15 - 36
  • [3] An Inexact Proximal-Type Method for the Generalized Variational Inequality in Banach Spaces
    LC Ceng
    G Mastroeni
    JC Yao
    Journal of Inequalities and Applications, 2007
  • [4] An inexact proximal-type method for the generalized variational inequality in Banach spaces
    Ceng, L. C.
    Mastroeni, G.
    Yao, J. C.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [5] Minimum-norm solution of variational inequality and fixed point problem in banach spaces
    Zegeye, Habtu
    Shahzad, Naseer
    Yao, Yonghong
    OPTIMIZATION, 2015, 64 (02) : 453 - 471
  • [6] Modified Tseng Method for Solving Pseudomonotone Variational Inequality Problem in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    Abass, Hammed A.
    Khan, Abdul Rahim
    SYMMETRY-BASEL, 2024, 16 (03):
  • [7] Viscosity approximation method for solving variational inequality problem in real Banach spaces
    Ugwunnadi, G. C.
    ARMENIAN JOURNAL OF MATHEMATICS, 2021, 13 (03): : 1 - 20
  • [8] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)
  • [9] A Proximal Point Method in Nonreflexive Banach Spaces
    Alfredo N. Iusem
    Elena Resmerita
    Set-Valued and Variational Analysis, 2010, 18 : 109 - 120
  • [10] A Proximal Point Method in Nonreflexive Banach Spaces
    Iusem, Alfredo N.
    Resmerita, Elena
    SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (01) : 109 - 120