Prediction of SPEI using MLR and ANN: A case study for Wilsons Promontory Station in Victoria

被引:7
|
作者
Mouatadid, Soukayna [1 ]
Deo, Ravinesh C. [2 ]
Adamowski, Jan F. [3 ]
机构
[1] McGill Univ, Dept Bioresource Engn, Montreal, PQ H3A 2T5, Canada
[2] Univ Southern Queensland, Sch Agr Computat & Environm, Springfield Cent, Qld 4300, Australia
[3] McGill Univ, Dept Bioresource Engn, Fac Agr & Environm Sci, Montreal, PQ H9X 3V9, Canada
关键词
multi-linear regression model; artifial neural network model; standardized precipitation index; drought modelling; ARTIFICIAL NEURAL-NETWORK; ESTIMATING SOLAR-RADIATION; INDEX; PRECIPITATION; QUEENSLAND; AUSTRALIA; MODELS;
D O I
10.1109/ICMLA.2015.87
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of drought is of major importance in climate-related studies, hydrologic engineering, wildlife or agricultural studies. This study explores the ability of two machine learning methods to predict 1, 3, 6 and 12 months standardized precipitation and evapotranspiration index ( SPEI) for the Wilsons Promontory station in Eastern Australia. The two methods are multiple linear regression ( MLR) and artificial neural networks ( ANN). The data-driven models were based on combinations of the input variables: mean precipitations, mean, maximum and minimum temperatures and evapotranspiration, for data between 1915 and 2012. Two performance metrics were used to compare the performance of the optimum MLR and ANN models: the coefficient of determination ( R-2) and the root mean square error ( RMSE). It was found that ANN provided greater accuracy than MLR in forecasting the 1, 3, 6 and 12 months SPEI.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 50 条
  • [1] Prediction of electrical conductivity using ANN and MLR: a case study from Turkey
    Keskin, TUlay Ekemen
    Ozler, Emre
    Sander, Emrah
    Dugenci, Muharrem
    Ahmed, Mohammed Yadgar
    [J]. ACTA GEOPHYSICA, 2020, 68 (03) : 811 - 820
  • [2] Prediction of electrical conductivity using ANN and MLR: a case study from Turkey
    Tülay Ekemen Keskin
    Emre Özler
    Emrah Şander
    Muharrem Düğenci
    Mohammed Yadgar Ahmed
    [J]. Acta Geophysica, 2020, 68 : 811 - 820
  • [3] Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform
    Khandekar, Sachin Dadu
    Aswar, Dinesh Shrikrishna
    Khandekar, Varsha Sachin
    Khaple, Shivakumar B.
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2024,
  • [4] Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses
    Louis, Bruno
    Agrawal, Vijay K.
    Khadikar, Padmakar V.
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2010, 45 (09) : 4018 - 4025
  • [5] Prediction of selectivity coefficients of a theophylline-selective electrode using MLR and ANN
    Riahi, S.
    Mousavi, M. F.
    Shamsipur, M.
    [J]. TALANTA, 2006, 69 (03) : 736 - 740
  • [6] Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models
    Kouadri, Saber
    Pande, Chaitanya B.
    Panneerselvam, Balamurugan
    Moharir, Kanak N.
    Elbeltagi, Ahmed
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (14) : 21067 - 21091
  • [7] Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models
    Saber Kouadri
    Chaitanya B. Pande
    Balamurugan Panneerselvam
    Kanak N. Moharir
    Ahmed Elbeltagi
    [J]. Environmental Science and Pollution Research, 2022, 29 : 21067 - 21091
  • [8] Forecasting PM10 levels using ANN and MLR: A case study for Sakarya City
    Ceylan, Z.
    Bulkan, S.
    [J]. GLOBAL NEST JOURNAL, 2018, 20 (02): : 281 - 290
  • [9] Smart Electricity Meter Load Prediction in Dubai Using MLR, ANN, RF, and ARIMA
    Sayed, Heba Allah
    William, Ashraf
    Said, Adel Mounir
    [J]. ELECTRONICS, 2023, 12 (02)
  • [10] Prediction of uplift resistance of circular anchors in anisotropic clays using MLR, ANN, and MARS
    Nguyen, Dang Khoa
    Nguyen, Trong Phuoc
    Ngamkhanong, Chayut
    Keawsawasvong, Suraparb
    Nguyen, Trung Kien
    Lai, Van Qui
    [J]. APPLIED OCEAN RESEARCH, 2023, 136