Determination of Spatially Resolved Tablet Density and Hardness Using Near-Infrared Chemical Imaging (NIR-CI)
被引:9
|
作者:
Talwar, Sameer
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Talwar, Sameer
[1
]
Roopwani, Rahul
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Roopwani, Rahul
[1
]
Anderson, Carl A.
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15282 USADuquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Anderson, Carl A.
[1
,2
]
Buckner, Ira S.
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15282 USADuquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Buckner, Ira S.
[1
,2
]
Drennen, James K., III
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15282 USADuquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
Drennen, James K., III
[1
,2
]
机构:
[1] Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USA
[2] Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15282 USA
Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA
Talwar, Sameer
Feng, Hanzhou
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA
Feng, Hanzhou
Drennen, James K.
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA
Drennen, James K.
Anderson, Carl A.
论文数: 0引用数: 0
h-index: 0
机构:
Duquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA
Duquesne Univ, Grad Sch Pharmaceut Sci, Pittsburgh, PA 15282 USADuquesne Univ, Duquesne Ctr Pharmaceut Technol, Pittsburgh, PA 15219 USA