Kinetic parameter estimation with nonlinear mixed-effects models

被引:3
|
作者
Krumpolc, Thomas [1 ]
Trahan, D. W. [2 ]
Hickman, D. A. [3 ]
Biegler, L. T. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Dow Chem Co USA, TXINN ECB, Lake Jackson, TX 77566 USA
[3] Dow Chem Co USA, 1776 Bldg, Midland, MI 48667 USA
关键词
Parameter estimation; Model discrimination; Mixed effects; Statistical inference; Confidence regions; DISCRIMINATION;
D O I
10.1016/j.cej.2022.136319
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Applications of fixed-effects models for kinetic parameter estimation using multiple batch experiments assume that all batches are independent. Multiple longitudinal batch experiments with time series data often exhibit biased residuals, violating this assumption. Nonlinear mixed-effects models offer an alternative approach to account for the two types of random experimental variation resulting from longitudinal experiments: the measurement error for each data point and the random batch-to-batch variation between experiments. Our case study models a single response hydrogenation reaction of acetophenone to 1-phenylethanol over a copper catalyst in a trickle-bed batch reactor system. Implementation of a mixed-effects model using nonlinear programming to model the batch reactor system results in parameter estimates with less bias compared to a fixed-effects model. We then apply the Bayesian notion of probability shares as a methodology for model discrimination between several candidate mixed-effects models, and demonstrate the ability to elucidate additional model information through the application of mixed-effects models when the use of fixed-effects models is inappropriate.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nonlinear mixed-effects models for kinetic parameter estimation with batch reactor data
    Hickman, Daniel A.
    Ignatowich, Michael J.
    Caracotsios, Michael
    Sheehan, James D.
    D'Ottaviano, Fabio
    [J]. Chemical Engineering Journal, 2019, 377
  • [2] Nonlinear mixed-effects models for kinetic parameter estimation with batch reactor data
    Hickman, Daniel A.
    Ignatowich, Michael J.
    Caracotsios, Michael
    Sheehan, James D.
    D'Ottaviano, Fabio
    [J]. CHEMICAL ENGINEERING JOURNAL, 2019, 377
  • [3] On the Estimation of Nonlinear Mixed-Effects Models and Latent Curve Models for Longitudinal Data
    Blozis, Shelley A.
    Harring, Jeffrey R.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) : 904 - 920
  • [4] Estimation of Time-Unstructured Nonlinear Mixed-Effects Mixture Models
    Serang, Sarfaraz
    Grimm, Kevin J.
    McArdle, John J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) : 856 - 869
  • [5] Parameter estimation of nonlinear mixed-effects models using first-order conditional linearization and the EM algorithm
    Fu, Liyong
    Lei, Yuancai
    Sharma, Ram P.
    Tang, Shouzheng
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (02) : 252 - 265
  • [6] Linear Mixed-Effects Models for Dependent Data: Power and Accuracy in Parameter Estimation
    Liu, Yue
    Hau, Kit-Tai
    Liu, Hongyun
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (05) : 978 - 994
  • [7] LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation
    Arribas-Gil, Ana
    Bertin, Karine
    Meza, Cristian
    Rivoirard, Vincent
    [J]. STATISTICS AND COMPUTING, 2014, 24 (03) : 443 - 460
  • [8] Estimation in nonlinear mixed-effects models using heavy-tailed distributions
    Cristian Meza
    Felipe Osorio
    Rolando De la Cruz
    [J]. Statistics and Computing, 2012, 22 : 121 - 139
  • [9] LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation
    Ana Arribas-Gil
    Karine Bertin
    Cristian Meza
    Vincent Rivoirard
    [J]. Statistics and Computing, 2014, 24 : 443 - 460
  • [10] Randomly Truncated Nonlinear Mixed-Effects Models
    Carolina Costa Mota Paraíba
    Carlos Alberto Ribeiro Diniz
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 295 - 313