Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning

被引:6
|
作者
Boeck, Markus [1 ]
Malle, Julien [1 ]
Pasterk, Daniel [1 ]
Kukina, Hrvoje [1 ]
Hasani, Ramin [2 ]
Heitzinger, Clemens [1 ,3 ]
机构
[1] Tech Univ Wien TU Wien, Vienna, Austria
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] TU Wien, CAIML Ctr Artificial Intelligence & Machine Learn, Vienna, Austria
来源
PLOS ONE | 2022年 / 17卷 / 11期
基金
奥地利科学基金会;
关键词
D O I
10.1371/journal.pone.0275358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a novel setup for treating sepsis using distributional reinforcement learning (RL). Sepsis is a life-threatening medical emergency. Its treatment is considered to be a challenging high-stakes decision-making problem, which has to procedurally account for risk. Treating sepsis by machine learning algorithms is difficult due to a couple of reasons: There is limited and error-afflicted initial data in a highly complex biological system combined with the need to make robust, transparent and safe decisions. We demonstrate a suitable method that combines data imputation by a kNN model using a custom distance with state representation by discretization using clustering, and that enables superhuman decision-making using speedy Q-learning in the framework of distributional RL. Compared to clinicians, the recovery rate is increased by more than 3% on the test data set. Our results illustrate how risk-aware RL agents can play a decisive role in critical situations such as the treatment of sepsis patients, a situation acerbated due to the COVID-19 pandemic (Martineau 2020). In addition, we emphasize the tractability of the methodology and the learning behavior while addressing some criticisms of the previous work (Komorowski et al. 2018) on this topic.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On the early detection of Sepsis in MIMIC-III
    Medina, Manuel
    Sala, Pietro
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 171 - 180
  • [2] Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database
    Mengling Feng
    Jakob I. McSparron
    Dang Trung Kien
    David J. Stone
    David H. Roberts
    Richard M. Schwartzstein
    Antoine Vieillard-Baron
    Leo Anthony Celi
    Intensive Care Medicine, 2018, 44 : 884 - 892
  • [3] Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database
    Feng, Mengling
    McSparron, Jakob I.
    Kien, Dang Trung
    Stone, David J.
    Roberts, David H.
    Schwartzstein, Richard M.
    Vieillard-Baron, Antoine
    Celi, Leo Anthony
    INTENSIVE CARE MEDICINE, 2018, 44 (06) : 884 - 892
  • [4] A flexible framework for sepsis prediction: Standardizing data management and imputation in time series using MIMIC-III
    Solis-Garcia, Javier
    Sanchez-Lopez, Jose E.
    Vega-Marquez, Belen
    Nepomuceno-Chamorro, Isabel A.
    SOFTWAREX, 2025, 29
  • [5] Benchmarking PySyft Federated Learning Framework on MIMIC-III Dataset
    Budrionis, Andrius
    Miara, Magda
    Miara, Piotr
    Wilk, Szymon
    Bellika, Johan Gustav
    IEEE ACCESS, 2021, 9 (09): : 116869 - 116878
  • [6] Platelets as a prognostic marker for sepsis A cohort study from the MIMIC-III database
    Zhao, Lina
    Zhao, Lijiao
    Wang, Yun Ying
    Yang, Fei
    Chen, Zhuang
    Yu, Qing
    Shi, Hui
    Huang, Shiying
    Zhao, Xiaoli
    Xiu, Limei
    Li, Xiaolu
    Li, Yun
    MEDICINE, 2020, 99 (45)
  • [7] Explainable Machine Learning Models for Pneumonia Mortality Risk Prediction Using MIMIC-III Data
    Sanii, James
    Chan, Wai Yip
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 68 - 73
  • [8] Missing Data Imputation for MIMIC-III using Matrix Decomposition
    Yang, Xi
    Kim, Yeo Jin
    Khoshnevisan, Farzaneh
    Zhang, Yuan
    Chi, Min
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 556 - 558
  • [9] THE CORRELATION BETWEEN THE HYPOALBUMINAEMIA AND HYPOCALCAEMIA IN SEPSIS PATIENTS: A RETROSPECTIVE STUDY FROM MIMIC-III
    Li, Weijia
    Huang, Lei
    Luo, Hua
    Zhang, Weixing
    He, Wencheng
    ACTA MEDICA MEDITERRANEA, 2022, 38 (05): : 3229 - 3237
  • [10] Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost
    Nianzong Hou
    Mingzhe Li
    Lu He
    Bing Xie
    Lin Wang
    Rumin Zhang
    Yong Yu
    Xiaodong Sun
    Zhengsheng Pan
    Kai Wang
    Journal of Translational Medicine, 18