Real-time monitoring of amyloid fibrillation by electrical impedance spectroscopy

被引:3
|
作者
da Silva, Rafael R. [1 ]
de Lima, Sandro V. [2 ]
de Oliveira, Helinando P. [3 ]
de Melo, Celso P. [4 ]
Frias, Isaac A. M. [1 ]
Oliveira, Maria D. L. [1 ,5 ]
Andrade, Cesar A. S. [1 ,5 ]
机构
[1] Univ Fed Pernambuco, Programa Posgrad Inovacao Terapeut, BR-50670901 Recife, DE, Brazil
[2] Univ Fed Ceara, BR-63700000 Crateus, CE, Brazil
[3] Univ Fed Vale Sao Francisco, Colegiado Posgrad Ciencia Mat, BR-48902300 Juazeiro, BA, Brazil
[4] Universidade Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[5] Universidade Fed Pernambuco, Dept Bioquim, BR-50670901 Recife, PE, Brazil
关键词
Insulin; Fibrillation; Thioflavin; Electrical impedance spectroscopy; Fluorescence; THIOFLAVIN-T-BINDING; AGGREGATION; FIBRILS; KINETICS; PROTOFIBRILS; MECHANISM; POINT; PHASE; MODEL; PH;
D O I
10.1016/j.colsurfb.2017.10.010
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electrical impedance spectroscopy (EIS) appears a promising label-free methodology for the investigation of processes related to the aggregation of macromolecules in solution. Here, we explore the EIS technique as a convenient tool for studying the irreversible aggregation of human insulin and describing its corresponding fibrillation kinetics. The in situ measurement of the electrical response of pure insulin solutions at 60 degrees C allows for the real-time monitoring of the protein fibrillation as a function of the incubation time. The fitting of the EIS data through an equivalent circuit based on a constant phase element provides a simple set of electric parameters whose abrupt changes can be associated to transitions occurring in the organization of the macromolecules. For establishing the reliability of the method proposed, we have compared the protein aggregation profile collected from the EIS data to that obtained from a conventional fluorescence methodology where Thioflavin T (ThT) is used as a dye probe. The description of the fibrillation process is quite similar in both cases, since characteristic times of the same order were found for the consecutive processes associated to the initial lag phase of insulin fibrillation, to the rapid growth of amyloidal aggregates and to the final saturation step. Our results suggest that in situ EIS can be considered as,a promising approach for the real-time label-free monitoring of protein fibril formation. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 50 条
  • [1] Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy
    Claudia Caviglia
    Francesca Garbarino
    Chiara Canali
    Fredrik Melander
    Roberto Raiteri
    Giorgio Ferrari
    Marco Sampietro
    Arto Heiskanen
    Thomas Lars Andresen
    Kinga Zór
    Jenny Emnéus
    [J]. Analytical and Bioanalytical Chemistry, 2020, 412 : 6371 - 6380
  • [2] Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy
    Caviglia, Claudia
    Garbarino, Francesca
    Canali, Chiara
    Melander, Fredrik
    Raiteri, Roberto
    Ferrari, Giorgio
    Sampietro, Marco
    Heiskanen, Arto
    Andresen, Thomas Lars
    Zor, Kinga
    Emneus, Jenny
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (24) : 6371 - 6380
  • [3] Real time fouling monitoring with Electrical Impedance Spectroscopy
    Cen, J.
    Vukas, M.
    Barton, G.
    Kavanagh, J.
    Coster, H. G. L.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 484 : 133 - 139
  • [4] Real-time monitoring of scale formation in reverse osmosis using electrical impedance spectroscopy
    Hu, Zhixin
    Antony, Alice
    Leslie, Greg
    Le-Clech, Pierre
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2014, 453 : 320 - 327
  • [5] Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy
    Zhu, Zhen
    Frey, Olivier
    Franke, Felix
    Haandbaek, Niels
    Hierlemann, Andreas
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (27) : 7015 - 7025
  • [6] Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy
    Zhen Zhu
    Olivier Frey
    Felix Franke
    Niels Haandbæk
    Andreas Hierlemann
    [J]. Analytical and Bioanalytical Chemistry, 2014, 406 : 7015 - 7025
  • [7] Real-time and on-line monitoring of morphological cell parameters using electrical impedance spectroscopy measurements
    Sarro, Enric
    Lecina, Marti
    Fontova, Andreu
    Godia, Francesc
    Bragos, Ramon
    Cairo, Jordi J.
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (06) : 1755 - 1762
  • [8] Evaluation and Real-Time Monitoring of Data Quality in Electrical Impedance Tomography
    Mamatjan, Yasin
    Grychtol, Bartlomiej
    Gaggero, Pascal
    Justiz, Joern
    Koch, Volker M.
    Adler, Andy
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) : 1997 - 2005
  • [9] An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography
    Xu, Canhua
    Dai, Meng
    You, Fusheng
    Shi, Xuetao
    Fu, Feng
    Liu, Ruigang
    Dong, Xiuzhen
    [J]. PHYSIOLOGICAL MEASUREMENT, 2011, 32 (05) : 585 - 598
  • [10] Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers
    Schusser, Sebastian
    Leinhos, Marcel
    Baecker, Matthias
    Poghossian, Arshak
    Wagner, Patrick
    Schoening, Michael J.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (05): : 905 - 910